Skewness-based projection pursuit: A computational approach

N Loperfido - Computational Statistics & Data Analysis, 2018 - Elsevier
Projection pursuit is a multivariate statistical technique aimed at finding interesting low-
dimensional data projections by maximizing a measure of interestingness commonly known …

High-dimensional outlier detection using random projections

P Navarro-Esteban, JA Cuesta-Albertos - Test, 2021 - Springer
There exist multiple methods to detect outliers in multivariate data in the literature, but most
of them require to estimate the covariance matrix. The higher the dimension, the more …

Prediction of Ultimate Bearing Capacity of Soil–Cement Mixed Pile Composite Foundation Using SA-IRMO-BPNN Model

L Xi, L Jin, Y Ji, P Liu, J Wei - Mathematics, 2024 - mdpi.com
The prediction of the ultimate bearing capacity (UBC) of composite foundations represents a
critical application of test monitoring data within the field of intelligent geotechnical …

On masking and swamping robustness of leading nonparametric outlier identifiers for multivariate data

S Wang, R Serfling - Journal of Multivariate Analysis, 2018 - Elsevier
For any outlier detection procedure, a key concern is robustness with respect to possible
misclassification errors, masking (Type I) and swamping (Type II). Although parametric …

Generalized implementation of invariant coordinate selection with positive semi-definite scatter matrices

A Archimbaud - arXiv preprint arXiv:2409.02258, 2024 - arxiv.org
Invariant coordinate selection (ICS) is an unsupervised multivariate data transformation
useful in many contexts such as outlier detection or clustering. It is based on the …

On invariant within equivalence coordinate system (IWECS) transformations

R Serfling - Modern nonparametric, robust and multivariate …, 2015 - Springer
In exploratory data analysis and data mining in the very common setting of a data set X of
vectors from Rd, the search for important features and artifacts of a geometrical nature is a …

Détection non-supervisée d'observations atypiques en contrôle de qualité: un survol

A Archimbaud - Journal de la société française de statistique, 2018 - numdam.org
La détection d'observations atypiques ou d'anomalies est un challenge dans de nombreux
domaines. Dans cet article, une revue de la littérature des méthodes non-supervisées est …

Statistical tests based on random projections

P Navarro Esteban - 2020 - repositorio.unican.es
Random projections project high-dimensional data into a lower dimensional subspace that
has been randomly chosen. They are used in problems that require handling reduced …

Méthodes statistiques de détection d'observations atypiques pour des données en grande dimension

A Archimbaud - 2018 - publications.ut-capitole.fr
La détection d'observations atypiques de manière non-supervisée est un enjeu crucial dans
la pratique de la statistique. Dans le domaine de la détection de défauts industriels, cette …

Identification Of Outliers In Oxazolines AND Oxazoles High Dimension Molecular Descriptor Dataset Using Principal Component Outlier Detection Algorithm And …

C Vastrad - arXiv preprint arXiv:1312.2861, 2013 - arxiv.org
From the past decade outlier detection has been in use. Detection of outliers is an emerging
topic and is having robust applications in medical sciences and pharmaceutical sciences …