Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the …

T Ahmad, R Madonski, D Zhang, C Huang… - … and Sustainable Energy …, 2022 - Elsevier
The current trend indicates that energy demand and supply will eventually be controlled by
autonomous software that optimizes decision-making and energy distribution operations …

Recent advances and applications of deep learning methods in materials science

K Choudhary, B DeCost, C Chen, A Jain… - npj Computational …, 2022 - nature.com
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …

Autonomous experimentation systems for materials development: A community perspective

E Stach, B DeCost, AG Kusne, J Hattrick-Simpers… - Matter, 2021 - cell.com
Solutions to many of the world's problems depend upon materials research and
development. However, advanced materials can take decades to discover and decades …

The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design

K Choudhary, KF Garrity, ACE Reid, B DeCost… - npj computational …, 2020 - nature.com
Abstract The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an
integrated infrastructure to accelerate materials discovery and design using density …

Opportunities and challenges for machine learning in materials science

D Morgan, R Jacobs - Annual Review of Materials Research, 2020 - annualreviews.org
Advances in machine learning have impacted myriad areas of materials science, such as
the discovery of novel materials and the improvement of molecular simulations, with likely …

Interpretable and explainable machine learning for materials science and chemistry

F Oviedo, JL Ferres, T Buonassisi… - Accounts of Materials …, 2022 - ACS Publications
Conspectus Machine learning has become a common and powerful tool in materials
research. As more data become available, with the use of high-performance computing and …

Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives

A Abidli, Y Huang, ZB Rejeb, A Zaoui, CB Park - Chemosphere, 2022 - Elsevier
Due to their numerous effects on human health and the natural environment, water
contamination with heavy metals and metalloids, caused by their extensive use in various …

[HTML][HTML] Machine learning for advanced energy materials

Y Liu, OC Esan, Z Pan, L An - Energy and AI, 2021 - Elsevier
The screening of advanced materials coupled with the modeling of their quantitative
structural-activity relationships has recently become one of the hot and trending topics in …

[HTML][HTML] Application of nanogenerators in acoustics based on artificial intelligence and machine learning

X Yu, T Ai, K Wang - APL Materials, 2024 - pubs.aip.org
As artificial intelligence (AI) advances, it is critical to give conventional electronics the
capacity to “think,”“analyze,” and “advise.” The need for intelligent, self-powered devices has …

Machine-learning and high-throughput studies for high-entropy materials

EW Huang, WJ Lee, SS Singh, P Kumar, CY Lee… - Materials Science and …, 2022 - Elsevier
The combination of multiple-principal element materials, known as high-entropy materials
(HEMs), expands the multi-dimensional compositional space to gigantic stoichiometry. It is …