Hrda: Context-aware high-resolution domain-adaptive semantic segmentation

L Hoyer, D Dai, L Van Gool - European conference on computer vision, 2022 - Springer
Unsupervised domain adaptation (UDA) aims to adapt a model trained on the source
domain (eg synthetic data) to the target domain (eg real-world data) without requiring further …

Model adaptation: Historical contrastive learning for unsupervised domain adaptation without source data

J Huang, D Guan, A Xiao, S Lu - Advances in neural …, 2021 - proceedings.neurips.cc
Unsupervised domain adaptation aims to align a labeled source domain and an unlabeled
target domain, but it requires to access the source data which often raises concerns in data …

Fsdr: Frequency space domain randomization for domain generalization

J Huang, D Guan, A Xiao, S Lu - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Abstract Domain generalization aims to learn a generalizable model from aknown'source
domain for variousunknown'target domains. It has been studied widely by domain …

Category contrast for unsupervised domain adaptation in visual tasks

J Huang, D Guan, A Xiao, S Lu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Instance contrast for unsupervised representation learning has achieved great success in
recent years. In this work, we explore the idea of instance contrastive learning in …

Transfer learning from synthetic to real lidar point cloud for semantic segmentation

A Xiao, J Huang, D Guan, F Zhan, S Lu - Proceedings of the AAAI …, 2022 - ojs.aaai.org
Abstract Knowledge transfer from synthetic to real data has been widely studied to mitigate
data annotation constraints in various computer vision tasks such as semantic segmentation …

Uncertainty-aware unsupervised domain adaptation in object detection

D Guan, J Huang, A Xiao, S Lu… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Unsupervised domain adaptive object detection aims to adapt detectors from a labelled
source domain to an unlabelled target domain. Most existing works take a two-stage strategy …

Unsupervised domain adaptive 3d detection with multi-level consistency

Z Luo, Z Cai, C Zhou, G Zhang… - Proceedings of the …, 2021 - openaccess.thecvf.com
Deep learning-based 3D object detection has achieved unprecedented success with the
advent of large-scale autonomous driving datasets. However, drastic performance …

Pin the memory: Learning to generalize semantic segmentation

J Kim, J Lee, J Park, D Min… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
The rise of deep neural networks has led to several breakthroughs for semantic
segmentation. In spite of this, a model trained on source domain often fails to work properly …

Spectral unsupervised domain adaptation for visual recognition

J Zhang, J Huang, Z Tian, S Lu - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Though unsupervised domain adaptation (UDA) has achieved very impressive progress
recently, it remains a great challenge due to missing target annotations and the rich …

Rda: Robust domain adaptation via fourier adversarial attacking

J Huang, D Guan, A Xiao, S Lu - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Unsupervised domain adaptation (UDA) involves a supervised loss in a labeled source
domain and an unsupervised loss in an unlabeled target domain, which often faces more …