Heterogeneous federated learning: State-of-the-art and research challenges

M Ye, X Fang, B Du, PC Yuen, D Tao - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …

A review of graph neural networks in epidemic modeling

Z Liu, G Wan, BA Prakash, MSY Lau, W Jin - Proceedings of the 30th …, 2024 - dl.acm.org
Since the onset of the COVID-19 pandemic, there has been a growing interest in studying
epidemiological models. Traditional mechanistic models mathematically describe the …

Federated learning for generalization, robustness, fairness: A survey and benchmark

W Huang, M Ye, Z Shi, G Wan, H Li… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Federated learning has emerged as a promising paradigm for privacy-preserving
collaboration among different parties. Recently, with the popularity of federated learning, an …

Generalizable heterogeneous federated cross-correlation and instance similarity learning

W Huang, M Ye, Z Shi, B Du - IEEE Transactions on Pattern …, 2023 - ieeexplore.ieee.org
Federated learning is an important privacy-preserving multi-party learning paradigm,
involving collaborative learning with others and local updating on private data. Model …

Dynamic personalized federated learning with adaptive differential privacy

X Yang, W Huang, M Ye - Advances in Neural Information …, 2023 - proceedings.neurips.cc
Personalized federated learning with differential privacy has been considered a feasible
solution to address non-IID distribution of data and privacy leakage risks. However, current …

Federated graph neural networks: Overview, techniques, and challenges

R Liu, P Xing, Z Deng, A Li, C Guan… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Graph neural networks (GNNs) have attracted extensive research attention in recent years
due to their capability to progress with graph data and have been widely used in practical …

Federated graph learning under domain shift with generalizable prototypes

G Wan, W Huang, M Ye - Proceedings of the AAAI Conference on …, 2024 - ojs.aaai.org
Federated Graph Learning is a privacy-preserving collaborative approach for training a
shared model on graph-structured data in the distributed environment. However, in real …

[PDF][PDF] Fisher calibration for backdoor-robust heterogeneous federated learning

W Huang, M Ye, Z Shi, B Du, D Tao - Proceedings of European …, 2024 - marswhu.github.io
Federated learning presents massive potential for privacyfriendly vision task collaboration.
However, the federated visual performance is deeply affected by backdoor attacks, where …

Federated Learning with Long-Tailed Data via Representation Unification and Classifier Rectification

W Huang, Y Liu, M Ye, J Chen… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Prevalent federated learning commonly develops under the assumption that the ideal global
class distributions are balanced. In contrast, real-world data typically follows the long-tailed …

Deep reinforcement learning for mobile robot path planning

H Liu, Y Shen, S Yu, Z Gao, T Wu - arXiv preprint arXiv:2404.06974, 2024 - arxiv.org
Path planning is an important problem with the the applications in many aspects, such as
video games, robotics etc. This paper proposes a novel method to address the problem of …