E Kosygina, T Mountford, J Peterson - The Annals of Probability, 2023 - projecteuclid.org
We use generalized Ray–Knight theorems, introduced by B. Tóth in 1996, together with techniques developed for excited random walks as main tools for establishing positive and …
X Liu, Z Wang - arXiv preprint arXiv:2402.11828, 2024 - arxiv.org
We show convergence of a family of one-dimensional self-interacting random walks to Brownian motion perturbed at extrema under the diffusive scaling. This completes the …
SH Chan, L Greco, L Levine, P Li - Journal of Statistical Physics, 2021 - Springer
We prove a quenched invariance principle for a class of random walks in random environment on Z d, where the walker alters its own environment. The environment consists …
Z Letterhos - arXiv preprint arXiv:2103.05570, 2021 - arxiv.org
We consider excited random walk (ERW) on $\mathbb {Z} $ in environments with identical stacks of infinitely many cookies at each site, subject to the constraint that the total drift per …
In this thesis we study two unary stochastic abelian networks: random walk with local memory, and branching processes in a Markovian environment. The first part is joint work …
Ce document présente la majorité de mes travaux de recherche réalisés depuis mon doctorat. Ces travaux sont classés selon quatre chapitres, le regroupement étant thématique …