Deep learning in spiking neural networks

A Tavanaei, M Ghodrati, SR Kheradpisheh… - Neural networks, 2019 - Elsevier
In recent years, deep learning has revolutionized the field of machine learning, for computer
vision in particular. In this approach, a deep (multilayer) artificial neural network (ANN) is …

A review of learning in biologically plausible spiking neural networks

A Taherkhani, A Belatreche, Y Li, G Cosma… - Neural Networks, 2020 - Elsevier
Artificial neural networks have been used as a powerful processing tool in various areas
such as pattern recognition, control, robotics, and bioinformatics. Their wide applicability has …

Slayer: Spike layer error reassignment in time

SB Shrestha, G Orchard - Advances in neural information …, 2018 - proceedings.neurips.cc
Abstract Configuring deep Spiking Neural Networks (SNNs) is an exciting research avenue
for low power spike event based computation. However, the spike generation function is non …

Supervised learning in spiking neural networks: A review of algorithms and evaluations

X Wang, X Lin, X Dang - Neural Networks, 2020 - Elsevier
As a new brain-inspired computational model of the artificial neural network, a spiking
neural network encodes and processes neural information through precisely timed spike …

Deep learning in neural networks: An overview

J Schmidhuber - Neural networks, 2015 - Elsevier
In recent years, deep artificial neural networks (including recurrent ones) have won
numerous contests in pattern recognition and machine learning. This historical survey …

Bindsnet: A machine learning-oriented spiking neural networks library in python

H Hazan, DJ Saunders, H Khan, D Patel… - Frontiers in …, 2018 - frontiersin.org
The development of spiking neural network simulation software is a critical component
enabling the modeling of neural systems and the development of biologically inspired …

Artificial intelligence and advanced materials

C López - Advanced Materials, 2023 - Wiley Online Library
Artificial intelligence (AI) is gaining strength, and materials science can both contribute to
and profit from it. In a simultaneous progress race, new materials, systems, and processes …

Vector symbolic architectures as a computing framework for emerging hardware

D Kleyko, M Davies, EP Frady, P Kanerva… - Proceedings of the …, 2022 - ieeexplore.ieee.org
This article reviews recent progress in the development of the computing framework vector
symbolic architectures (VSA)(also known as hyperdimensional computing). This framework …

Networks of spiking neurons: the third generation of neural network models

W Maass - Neural networks, 1997 - Elsevier
The computational power of formal models for networks of spiking neurons is compared with
that of other neural network models based on McCulloch Pitts neurons (ie, threshold gates) …

Real-time computing without stable states: A new framework for neural computation based on perturbations

W Maass, T Natschläger, H Markram - Neural computation, 2002 - ieeexplore.ieee.org
A key challenge for neural modeling is to explain how a continuous stream of multimodal
input from a rapidly changing environment can be processed by stereotypical recurrent …