A survey of isochronous centers

J Chavarriga, M Sabatini - Qualitative theory of dynamical systems, 1999 - Springer
Св и з зйжк н л к в гк жк л г и ж зйаиз г и в в и зий н г зг жгвгйз ви жз г к игж Ќ а з в и да в К
Ь з д д ж гвз зиз г илг д жизК Св и Ќжзи гв Дз и гвз Оп ЕИ л ж к л згб в ж а и в ей з и и джгк …

On the integrability of two-dimensional flows

J Chavarriga, H Giacomini, J Giné, J Llibre - journal of differential equations, 1999 - Elsevier
This paper deals with the notion of integrability of flows or vector fields on two-dimensional
manifolds. We consider the following two key points about first integrals:(1) They must be …

Linearizability conditions for Lotka–Volterra planar complex cubic systems

J Gine, VG Romanovski - Journal of Physics A: Mathematical and …, 2009 - iopscience.iop.org
In this paper, we investigate the linearizability problem for the two-dimensional planar
complex system. The necessary and sufficient conditions for the linearizability of this system …

Isochronicity into a family of time-reversible cubic vector fields

J Chavarriga, IA Garcıa, J Giné - Applied mathematics and computation, 2001 - Elsevier
In this work, we study necessary and sufficient conditions for the existence of isochronous
centers into a family of cubic time-reversible systems. This class of reversible systems is …

A class of reversible cubic systems with an isochronous center

L Cairó, J Chavarriga, J Giné, J Llibre - Computers & Mathematics with …, 1999 - Elsevier
We study cubic polynomial differential systems having an isochronous center and an inverse
integrating factor formed by two different parallel invariant straight lines. Such systems are …

Limit cycles for a class of continuous and discontinuous cubic polynomial differential systems

J Llibre, BD Lopes, JR De Moraes - Qualitative theory of dynamical …, 2014 - Springer
We study the maximum number of limit cycles that bifurcate from the periodic solutions of the
family of isochronous cubic polynomial centers ̇ x= y (-1+ 2 α x+ 2 β x^ 2),\quad ̇ y= x+ α …

On the number of limit cycles for a perturbed cubic reversible Hamiltonian system

J Yang - Chaos: An Interdisciplinary Journal of Nonlinear …, 2024 - pubs.aip.org
This paper is concerned with the limit cycle problem of a cubic reversible Hamiltonian
system under perturbation of polynomials of degree n with a switching line x= 0⁠. The upper …

Linearizable planar differential systems via the inverse integrating factor

H Giacomini, J Giné, M Grau - Journal of Physics A: Mathematical …, 2008 - iopscience.iop.org
Our purpose in this paper is to study when a planar differential system polynomial in one
variable linearizes in the sense that it has an inverse integrating factor which can be …

[PDF][PDF] Linearization of smooth planar vector fields around singular points via commuting flows

I Garcia, J Giné, S Maza - Commun. Pure Appl. Anal, 2008 - researchgate.net
In this paper we propose a constructive procedure to get the change of variables that
linearizes a smooth planar vector field on C2 around an elementary singular point (ie, a …

[引用][C] 一类可逆三次系统的等时中心

桑波, 朱思铭 - 系统科学与数学, 2008