Deep learning in histopathology: the path to the clinic

J Van der Laak, G Litjens, F Ciompi - Nature medicine, 2021 - nature.com
Abstract Machine learning techniques have great potential to improve medical diagnostics,
offering ways to improve accuracy, reproducibility and speed, and to ease workloads for …

Deep neural network models for computational histopathology: A survey

CL Srinidhi, O Ciga, AL Martel - Medical image analysis, 2021 - Elsevier
Histopathological images contain rich phenotypic information that can be used to monitor
underlying mechanisms contributing to disease progression and patient survival outcomes …

Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation

N Tajbakhsh, L Jeyaseelan, Q Li, JN Chiang, Z Wu… - Medical image …, 2020 - Elsevier
The medical imaging literature has witnessed remarkable progress in high-performing
segmentation models based on convolutional neural networks. Despite the new …

Weakly supervised machine learning

Z Ren, S Wang, Y Zhang - CAAI Transactions on Intelligence …, 2023 - Wiley Online Library
Supervised learning aims to build a function or model that seeks as many mappings as
possible between the training data and outputs, where each training data will predict as a …

[HTML][HTML] Deep learning approaches to biomedical image segmentation

IRI Haque, J Neubert - Informatics in Medicine Unlocked, 2020 - Elsevier
The review covers automatic segmentation of images by means of deep learning
approaches in the area of medical imaging. Current developments in machine learning …

Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis

RJ Chen, MY Lu, J Wang… - … on Medical Imaging, 2020 - ieeexplore.ieee.org
Cancer diagnosis, prognosis, mymargin and therapeutic response predictions are based on
morphological information from histology slides and molecular profiles from genomic data …

Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis

V Cheplygina, M De Bruijne, JPW Pluim - Medical image analysis, 2019 - Elsevier
Abstract Machine learning (ML) algorithms have made a tremendous impact in the field of
medical imaging. While medical imaging datasets have been growing in size, a challenge …

[HTML][HTML] Machine learning methods for histopathological image analysis

D Komura, S Ishikawa - Computational and structural biotechnology journal, 2018 - Elsevier
Abundant accumulation of digital histopathological images has led to the increased demand
for their analysis, such as computer-aided diagnosis using machine learning techniques …

Multiple instance learning for histopathological breast cancer image classification

PJ Sudharshan, C Petitjean, F Spanhol… - Expert Systems with …, 2019 - Elsevier
Histopathological images are the gold standard for breast cancer diagnosis. During
examination several dozens of them are acquired for a single patient. Conventional, image …

Constrained-CNN losses for weakly supervised segmentation

H Kervadec, J Dolz, M Tang, E Granger, Y Boykov… - Medical image …, 2019 - Elsevier
Weakly-supervised learning based on, eg, partially labelled images or image-tags, is
currently attracting significant attention in CNN segmentation as it can mitigate the need for …