Fpga accelerator for meta-recognition anomaly detection: Case of burned area detection

M Coca, M Datcu - IEEE Journal of Selected Topics in Applied …, 2023 - ieeexplore.ieee.org
Optical remote sensing instruments accumulate abundant data from across all of the earth's
land surfaces, making it possible both to understand the effects of climate change and to …

Hybrid Variability Aware Network (HVANet): A self-supervised deep framework for label-free SAR image change detection

J Wang, Y Wang, H Liu - Remote Sensing, 2022 - mdpi.com
Synthetic aperture radar (SAR) image change detection (CD) aims to automatically
recognize changes over the same geographic region by comparing prechange and …

Effects of category aggregation on land change simulation based on corine land cover data

OG Varga, RG Pontius Jr, Z Szabó, S Szabó - Remote Sensing, 2020 - mdpi.com
Several factors influence the performance of land change simulation models. One potentially
important factor is land category aggregation, which reduces the number of categories while …

SAS-NET: Similarity attention Siamese network for building change detection in UAV images

Y Zhai, W Li, Z Tan, J Zhou, Q Li… - IGARSS 2023-2023 IEEE …, 2023 - ieeexplore.ieee.org
Change detection refers to extract change information using deep learning or traditional
image processing methods to quantitatively analyze and characterize landmark changes on …

[HTML][HTML] Recent advancement of Synthetic Aperture Radar (SAR) systems and their applications to crop growth monitoring

J Shang, J Liu, Z Chen, H McNairn… - Recent Remote Sensing …, 2022 - intechopen.com
Synthetic aperture radars (SARs) propagate and measure the scattering of energy at
microwave frequencies. These wavelengths are sensitive to the dielectric properties and …

Accurate monitoring of the danube delta dynamics using copernicus data

CO Dumitru, G Dax, G Schwarz… - Remote Sensing of …, 2019 - spiedigitallibrary.org
In the following, we describe highly-automated image analysis approaches that help us
classify satellite images, and allow us to monitor dynamical changes in image time series …

Semantic analysis of satellite image time series

CO Dumitru, M Datcu - … , book on change detection and image …, 2021 - books.google.com
During the last years, huge quantities of satellite images are available due to the increased
number of Earth observation (EO) sensors. Thanks to this, the acquisition frequency is …

Aspects of Algorithmic Information Theory in Spatial Machine Learning

G Dax - 2024 - mediatum.ub.tum.de
In spatial computing, data-driven systems process vast data but face challenges due to
complex algorithms and growing datasets, necessitating hardware scaling with higher costs …

Techniques de classification basées sur les pixels pour les séries chronologiques d'images satellitaires

C PELLETIER¹, S VALERO - … et analyse des séries temporelles d …, 2024 - books.google.com
Les séries chronologiques d'images satellitaires se sont avérées être un outil efficace pour
surveiller la dynamique de la végétation, les ressources et les effets du changement …

[PDF][PDF] Classification of Images Using Hybrid Convolutional Neural Networks

K Ramalakshmi, L Krishnakumari, PA Mathina… - researchgate.net
The classification of the land-cover like forest, urban, water/ice, farm-land ie crop, oil-slick is
important for controlling deterioration of the environment and destruction of wetland, for …