Challenges and applications of large language models

J Kaddour, J Harris, M Mozes, H Bradley… - arXiv preprint arXiv …, 2023 - arxiv.org
Large Language Models (LLMs) went from non-existent to ubiquitous in the machine
learning discourse within a few years. Due to the fast pace of the field, it is difficult to identify …

A review of deep learning techniques for speech processing

A Mehrish, N Majumder, R Bharadwaj, R Mihalcea… - Information …, 2023 - Elsevier
The field of speech processing has undergone a transformative shift with the advent of deep
learning. The use of multiple processing layers has enabled the creation of models capable …

Llm-pruner: On the structural pruning of large language models

X Ma, G Fang, X Wang - Advances in neural information …, 2023 - proceedings.neurips.cc
Large language models (LLMs) have shown remarkable capabilities in language
understanding and generation. However, such impressive capability typically comes with a …

H2o: Heavy-hitter oracle for efficient generative inference of large language models

Z Zhang, Y Sheng, T Zhou, T Chen… - Advances in …, 2023 - proceedings.neurips.cc
Abstract Large Language Models (LLMs), despite their recent impressive accomplishments,
are notably cost-prohibitive to deploy, particularly for applications involving long-content …

A survey on model compression for large language models

X Zhu, J Li, Y Liu, C Ma, W Wang - Transactions of the Association for …, 2024 - direct.mit.edu
Abstract Large Language Models (LLMs) have transformed natural language processing
tasks successfully. Yet, their large size and high computational needs pose challenges for …

Flexgen: High-throughput generative inference of large language models with a single gpu

Y Sheng, L Zheng, B Yuan, Z Li… - International …, 2023 - proceedings.mlr.press
The high computational and memory requirements of large language model (LLM) inference
make it feasible only with multiple high-end accelerators. Motivated by the emerging …

Towards automated circuit discovery for mechanistic interpretability

A Conmy, A Mavor-Parker, A Lynch… - Advances in …, 2023 - proceedings.neurips.cc
Through considerable effort and intuition, several recent works have reverse-engineered
nontrivial behaviors oftransformer models. This paper systematizes the mechanistic …

Deja vu: Contextual sparsity for efficient llms at inference time

Z Liu, J Wang, T Dao, T Zhou, B Yuan… - International …, 2023 - proceedings.mlr.press
Large language models (LLMs) with hundreds of billions of parameters have sparked a new
wave of exciting AI applications. However, they are computationally expensive at inference …

A simple and effective pruning approach for large language models

M Sun, Z Liu, A Bair, JZ Kolter - arXiv preprint arXiv:2306.11695, 2023 - arxiv.org
As their size increases, Large Languages Models (LLMs) are natural candidates for network
pruning methods: approaches that drop a subset of network weights while striving to …

A survey on deep neural network pruning: Taxonomy, comparison, analysis, and recommendations

H Cheng, M Zhang, JQ Shi - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
Modern deep neural networks, particularly recent large language models, come with
massive model sizes that require significant computational and storage resources. To …