Surface doping vs. bulk doping of cathode materials for lithium-ion batteries: a review

H Qian, H Ren, Y Zhang, X He, W Li, J Wang… - Electrochemical Energy …, 2022 - Springer
To address the capacity degradation, voltage fading, structural instability and adverse
interface reactions in cathode materials of lithium-ion batteries (LIBs), numerous …

Commercialization of lithium battery technologies for electric vehicles

X Zeng, M Li, D Abd El‐Hady, W Alshitari… - Advanced Energy …, 2019 - Wiley Online Library
The currently commercialized lithium‐ion batteries have allowed for the creation of practical
electric vehicles, simultaneously satisfying many stringent milestones in energy density …

The surface double-coupling on single-crystal LiNi0. 8Co0. 1Mn0. 1O2 for inhibiting the formation of intragranular cracks and oxygen vacancies

Y Liu, T Zeng, G Li, T Wan, M Li, X Zhang, M Li… - Energy Storage …, 2022 - Elsevier
Abstract Single-crystal LiNi 0.8 Co 0.1 Mn 0.1 O 2 (SC-811), which prevents grain-boundary
fracture and offers better cycle performance compared to the polycrystalline morphology …

Ni-rich layered cathodes for lithium-ion batteries: From challenges to the future

J Yang, X Liang, HH Ryu, CS Yoon, YK Sun - Energy Storage Materials, 2023 - Elsevier
Extending the limited driving range of current electric vehicles (EVs) necessitates the
development of high-energy-density lithium-ion batteries (LIBs) for which Ni-rich layered …

Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries

J Liu, J Wang, Y Ni, K Zhang, F Cheng, J Chen - Materials Today, 2021 - Elsevier
Ni-rich layered oxides (NRLOs) and Li-rich layered oxides (LRLOs) have been considered
as promising next-generation cathode materials for lithium ion batteries (LIBs) due to their …

Ni‐rich/Co‐poor layered cathode for automotive Li‐ion batteries: promises and challenges

X Wang, YL Ding, YP Deng… - Advanced Energy …, 2020 - Wiley Online Library
To pursue a higher energy density (> 300 Wh kg− 1 at the cell level) and a lower cost (<
$125 kWh− 1 expected at 2022) of Li‐ion batteries for making electric vehicles (EVs) long …

Beyond doping and coating: prospective strategies for stable high-capacity layered Ni-rich cathodes

HH Sun, HH Ryu, UH Kim, JA Weeks, A Heller… - ACS energy …, 2020 - ACS Publications
This Perspective discusses the prospective strategies for overcoming the stability and
capacity trade-off associated with increased Ni content in layered Ni-rich Li [Ni x Co y Mn z] …

Controllable Cathode–Electrolyte Interface of Li[Ni0.8Co0.1Mn0.1]O2 for Lithium Ion Batteries: A Review

H Maleki Kheimeh Sari, X Li - Advanced Energy Materials, 2019 - Wiley Online Library
As a high‐capacity layered cathode material, Li [Ni0. 8Co0. 1Mn0. 1] O2 (NCM811) has
been one of the most felicitous candidates for utilization in the next generation of high …

Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries

T Li, XZ Yuan, L Zhang, D Song, K Shi… - Electrochemical Energy …, 2020 - Springer
The demand for lithium-ion batteries (LIBs) with high mass-specific capacities, high rate
capabilities and long-term cyclabilities is driving the research and development of LIBs with …

Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives

ST Myung, F Maglia, KJ Park, CS Yoon… - ACS Energy …, 2017 - ACS Publications
Future generations of electric vehicles require driving ranges of at least 300 miles to
successfully penetrate the mass consumer market. A significant improvement in the energy …