Developing future human-centered smart cities: Critical analysis of smart city security, Data management, and Ethical challenges

K Ahmad, M Maabreh, M Ghaly, K Khan, J Qadir… - Computer Science …, 2022 - Elsevier
As the globally increasing population drives rapid urbanization in various parts of the world,
there is a great need to deliberate on the future of the cities worth living. In particular, as …

A survey of privacy attacks in machine learning

M Rigaki, S Garcia - ACM Computing Surveys, 2023 - dl.acm.org
As machine learning becomes more widely used, the need to study its implications in
security and privacy becomes more urgent. Although the body of work in privacy has been …

High accuracy and high fidelity extraction of neural networks

M Jagielski, N Carlini, D Berthelot, A Kurakin… - 29th USENIX security …, 2020 - usenix.org
In a model extraction attack, an adversary steals a copy of a remotely deployed machine
learning model, given oracle prediction access. We taxonomize model extraction attacks …

Data-free model extraction

JB Truong, P Maini, RJ Walls… - Proceedings of the …, 2021 - openaccess.thecvf.com
Current model extraction attacks assume that the adversary has access to a surrogate
dataset with characteristics similar to the proprietary data used to train the victim model. This …

Towards data-free model stealing in a hard label setting

S Sanyal, S Addepalli, RV Babu - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Abstract Machine learning models deployed as a service (MLaaS) are susceptible to model
stealing attacks, where an adversary attempts to steal the model within a restricted access …

I know what you trained last summer: A survey on stealing machine learning models and defences

D Oliynyk, R Mayer, A Rauber - ACM Computing Surveys, 2023 - dl.acm.org
Machine-Learning-as-a-Service (MLaaS) has become a widespread paradigm, making
even the most complex Machine Learning models available for clients via, eg, a pay-per …

Entangled watermarks as a defense against model extraction

H Jia, CA Choquette-Choo, V Chandrasekaran… - 30th USENIX security …, 2021 - usenix.org
Machine learning involves expensive data collection and training procedures. Model owners
may be concerned that valuable intellectual property can be leaked if adversaries mount …

Protecting intellectual property of language generation apis with lexical watermark

X He, Q Xu, L Lyu, F Wu, C Wang - … of the AAAI Conference on Artificial …, 2022 - ojs.aaai.org
Nowadays, due to the breakthrough in natural language generation (NLG), including
machine translation, document summarization, image captioning, etc NLG models have …

Deepsteal: Advanced model extractions leveraging efficient weight stealing in memories

AS Rakin, MHI Chowdhuryy, F Yao… - 2022 IEEE symposium …, 2022 - ieeexplore.ieee.org
Recent advancements in Deep Neural Networks (DNNs) have enabled widespread
deployment in multiple security-sensitive domains. The need for resource-intensive training …

Thieves on sesame street! model extraction of bert-based apis

K Krishna, GS Tomar, AP Parikh, N Papernot… - arXiv preprint arXiv …, 2019 - arxiv.org
We study the problem of model extraction in natural language processing, in which an
adversary with only query access to a victim model attempts to reconstruct a local copy of …