A streaming data clustering method based on dual strategies improved DENCLUE

T Cai, J Lv, Z Ye, X Li, W Zhou, O Kochan - IEEE Access, 2024 - ieeexplore.ieee.org
Streaming data arrives continually and is characterized by fast, massive, dynamic evolution
and instability. Different from traditional static data clustering, streaming data clustering …

Online machine learning-based predictive maintenance for the railway industry

MH Le Nguyen - 2023 - theses.hal.science
Being an effective long-distance mass transit, the railway will continue to flourish for its
limited carbon footprint in the environment. Ensuring the equipment's reliability and …

EdgeCluster: A Resource-Aware Evolving Clustering for Streaming Data

M Angelova, V Boeva, S Abghari - 2024 IEEE International …, 2024 - ieeexplore.ieee.org
In this paper, we propose a novel evolving clustering algorithm for streaming data entitled
EdgeCluster. The proposed algorithm is resource efficient, making it suitable for use at edge …

[PDF][PDF] MultiStream EvolveCluster

C Nordahl, V Boeva, H Grahn - The 36th Canadian Conference …, 2023 - assets.pubpub.org
This paper proposes a novel multi-stream clustering algorithm, MultiStream EvolveCluster
(MS-EC), that can be used for continuous and distributed monitoring and analysis of …

[PDF][PDF] Data Stream Mining and Analysis

C Nordahl - diva-portal.org
Streaming data is becoming more prevalent in our society every day. With the increasing
use of technologies such as the Internet of Things (IoT) and 5G networks, the number of …

[PDF][PDF] Deteccion de fallos mediante clasificacion multi-etiqueta para flujos de datos

El Mantenimiento Predictivo se ha establecido como un componente crıtico de la Industria
4.0, optimizando la eficiencia operativa y minimizando los costos de mantenimiento gracias …