Extension property for partial automorphisms of the -partite and semigeneric tournaments

J Hubička, C Jahel, M Konečný, M Sabok - arXiv preprint arXiv …, 2024 - arxiv.org
We present a proof of the extension property for partial automorphisms (EPPA) for classes of
finite $ n $-partite tournaments for $ n\in\{2, 3,\ldots,\omega\} $, and for the class of finite …

Ramsey properties and extending partial automorphisms for classes of finite structures

DM Evans, J Hubička, J Nešetřil - arXiv preprint arXiv:1705.02379, 2017 - arxiv.org
We show that every free amalgamation class of finite structures with relations and
(symmetric) partial functions is a Ramsey class when enriched by a free linear ordering of …

[PDF][PDF] A combinatorial proof of the extension property for partial isometries

J Hubička, M Konečný, J Nešetřil - arXiv preprint arXiv:1807.10976, 2018 - arxiv.org
arXiv:1807.10976v2 [math.CO] 28 Aug 2018 Page 1 A COMBINATORIAL PROOF OF THE
EXTENSION PROPERTY FOR PARTIAL ISOMETRIES JAN HUBICKA, MATEJ KONECNÝ …

[HTML][HTML] EPPA numbers of graphs

D Bradley-Williams, PJ Cameron, J Hubička… - Journal of Combinatorial …, 2025 - Elsevier
If G is a graph, A and B its induced subgraphs, and f: A→ B an isomorphism, we say that f is
a partial automorphism of G. In 1992, Hrushovski proved that graphs have the extension …

All those EPPA classes (strengthenings of the Herwig–Lascar theorem)

J Hubička, M Konečný, J Nešetřil - Transactions of the American …, 2022 - ams.org
Let $\mathbf {A} $ be a finite structure. We say that a finite structure $\mathbf {B} $ is an
extension property for partial automorphisms (EPPA)-witness for $\mathbf {A} $ if it contains …

EPPA for two-graphs and antipodal metric spaces

D Evans, J Hubička, M Konečný, J Nešetřil - Proceedings of the American …, 2020 - ams.org
We prove that the class of finite two-graphs has the extension property for partial
automorphisms (EPPA, or Hrushovski property), thereby answering a question of …

Semigroup-valued metric spaces

M Konečný - arXiv preprint arXiv:1810.08963, 2018 - arxiv.org
The structural Ramsey theory is a field on the boundary of combinatorics and model theory
with deep connections to topological dynamics. Most of the known Ramsey classes in finite …

Completing graphs to metric spaces

A Aranda, D Bradley-Williams, EK Hng… - Electronic Notes in …, 2017 - Elsevier
Completing graphs to metric spaces Page 1 Completing graphs to metric spaces Andrés Aranda4
Computer Science Institute of Charles University (IUUK) Charles University Prague, Czech …

[HTML][HTML] Extending partial isometries of antipodal graphs

M Konečný - Discrete Mathematics, 2020 - Elsevier
We prove EPPA (extension property for partial automorphisms) for all antipodal classes from
Cherlin's list of metrically homogeneous graphs, thereby answering a question of Aranda et …

Conant's generalised metric spaces are Ramsey

J Hubička, M Konečný, J Nešetřil - arXiv preprint arXiv:1710.04690, 2017 - arxiv.org
We give Ramsey expansions of classes of generalised metric spaces where distances come
from a linearly ordered commutative monoid. This complements results of Conant about the …