Effective equidistribution of primitive rational points on expanding horospheres

D El-Baz, M Lee, A Strömbergsson - arXiv preprint arXiv:2212.07408, 2022 - arxiv.org
We prove an effective version of a result due to Einsiedler, Mozes, Shah and Shapira on the
asymptotic distribution of primitive rational points on expanding closed horospheres in the …

Smallest denominators

J Marklof - Bulletin of the London Mathematical Society, 2024 - Wiley Online Library
We establish higher dimensional versions of a recent theorem by Chen and Haynes [Int. J.
Number Theory 19 (2023), 1405–1413] on the expected value of the smallest denominator …

Integer points on spheres and their orthogonal lattices

M Aka, M Einsiedler, U Shapira - Inventiones mathematicae, 2016 - Springer
Linnik proved in the late 1950's the equidistribution of integer points on large spheres under
a congruence condition. The congruence condition was lifted in 1988 by Duke (building on a …

Equidistribution of primitive lattices in ℝn

T Horesh, Y Karasik - The Quarterly Journal of Mathematics, 2023 - academic.oup.com
We count primitive lattices of rank d inside as their covolume tends to infinity, with respect to
certain parameters of such lattices. These parameters include, for example, the subspace …

Integer points on spheres and their orthogonal grids

M Aka, M Einsiedler, U Shapira - Journal of the London …, 2016 - academic.oup.com
The set of primitive vectors on large spheres in the euclidean space of dimension
equidistribute when projected on the unit sphere. We consider here a refinement of this …

Distribution of shapes of orthogonal lattices

M Einsiedler, R Rühr, P Wirth - Ergodic Theory and Dynamical …, 2019 - cambridge.org
Distribution of shapes of orthogonal lattices Page 1 Ergod. Th. & Dynam. Sys. (2019), 39,
1531–1607 doi:10.1017/etds.2017.78 c Cambridge University Press, 2017 Distribution of …

Joint effective equidistribution of partial lattices in positive characteristic

T Horesh, F Paulin - arXiv preprint arXiv:2404.04368, 2024 - arxiv.org
Let $\nu $ be a place of a global function field $ K $ over a finite field, with associated affine
function ring $ R_\nu $ and completion $ K_\nu $, and let $1\leq\mathfrak {m}<\textbf {d} …

Matrix Kloosterman sums

M Erdélyi, Á Tóth - Algebra & Number Theory, 2024 - msp.org
Matrix Kloosterman sums Page 1 Algebra & Number Theory msp Volume 18 2024 No. 12
Matrix Kloosterman sums Márton Erdélyi and Árpád Tóth Page 2 msp ALGEBRA AND …

Geometric and arithmetic aspects of approximation vectors

U Shapira, B Weiss - arXiv preprint arXiv:2206.05329, 2022 - arxiv.org
Let $\theta\in\mathbb {R}^ d $. We associate three objects to each approximation $(p,
q)\in\mathbb {Z}^ d\times\mathbb {N} $ of $\theta $: the projection of the lattice $\mathbb …

The purity locus of matrix Kloosterman sums

M Erdélyi, W Sawin, Á Tóth - Transactions of the American Mathematical …, 2024 - ams.org
We construct a perverse sheaf related to the the matrix exponential sums investigated by
Erdélyi and Tóth [Matrix Kloosterman sums, 2021, arXiv: 2109.00762]. As this sheaf appears …