Scientific discovery in the age of artificial intelligence

H Wang, T Fu, Y Du, W Gao, K Huang, Z Liu… - Nature, 2023 - nature.com
Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment
and accelerate research, helping scientists to generate hypotheses, design experiments …

[HTML][HTML] Natural language processing applied to mental illness detection: a narrative review

T Zhang, AM Schoene, S Ji, S Ananiadou - NPJ digital medicine, 2022 - nature.com
Mental illness is highly prevalent nowadays, constituting a major cause of distress in
people's life with impact on society's health and well-being. Mental illness is a complex multi …

[HTML][HTML] Deep learning in food category recognition

Y Zhang, L Deng, H Zhu, W Wang, Z Ren, Q Zhou… - Information …, 2023 - Elsevier
Integrating artificial intelligence with food category recognition has been a field of interest for
research for the past few decades. It is potentially one of the next steps in revolutionizing …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods

D Lim, F Hohne, X Li, SL Huang… - Advances in …, 2021 - proceedings.neurips.cc
Many widely used datasets for graph machine learning tasks have generally been
homophilous, where nodes with similar labels connect to each other. Recently, new Graph …

A survey on deep semi-supervised learning

X Yang, Z Song, I King, Z Xu - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Deep semi-supervised learning is a fast-growing field with a range of practical applications.
This paper provides a comprehensive survey on both fundamentals and recent advances in …

Tent: Fully test-time adaptation by entropy minimization

D Wang, E Shelhamer, S Liu, B Olshausen… - arXiv preprint arXiv …, 2020 - arxiv.org
A model must adapt itself to generalize to new and different data during testing. In this
setting of fully test-time adaptation the model has only the test data and its own parameters …

A survey on semi-supervised learning

JE Van Engelen, HH Hoos - Machine learning, 2020 - Springer
Semi-supervised learning is the branch of machine learning concerned with using labelled
as well as unlabelled data to perform certain learning tasks. Conceptually situated between …

Combining label propagation and simple models out-performs graph neural networks

Q Huang, H He, A Singh, SN Lim… - arXiv preprint arXiv …, 2020 - arxiv.org
Graph Neural Networks (GNNs) are the predominant technique for learning over graphs.
However, there is relatively little understanding of why GNNs are successful in practice and …

Cross attention network for few-shot classification

R Hou, H Chang, B Ma, S Shan… - Advances in neural …, 2019 - proceedings.neurips.cc
Few-shot classification aims to recognize unlabeled samples from unseen classes given
only few labeled samples. The unseen classes and low-data problem make few-shot …