Study on artificial intelligence: The state of the art and future prospects

C Zhang, Y Lu - Journal of Industrial Information Integration, 2021 - Elsevier
In the world, the technological and industrial revolution is accelerating by the widespread
application of new generation information and communication technologies, such as AI, IoT …

Deep learning: Applications, architectures, models, tools, and frameworks: A comprehensive survey

M Gheisari, F Ebrahimzadeh, M Rahimi… - CAAI Transactions …, 2023 - Wiley Online Library
Deep Learning (DL) is a subfield of machine learning that significantly impacts extracting
new knowledge. By using DL, the extraction of advanced data representations and …

A survey on deep learning for human activity recognition

F Gu, MH Chung, M Chignell, S Valaee… - ACM Computing …, 2021 - dl.acm.org
Human activity recognition is a key to a lot of applications such as healthcare and smart
home. In this study, we provide a comprehensive survey on recent advances and challenges …

Pytorch: An imperative style, high-performance deep learning library

A Paszke, S Gross, F Massa, A Lerer… - Advances in neural …, 2019 - proceedings.neurips.cc
Deep learning frameworks have often focused on either usability or speed, but not both.
PyTorch is a machine learning library that shows that these two goals are in fact compatible …

Optuna: A next-generation hyperparameter optimization framework

T Akiba, S Sano, T Yanase, T Ohta… - Proceedings of the 25th …, 2019 - dl.acm.org
The purpose of this study is to introduce new design-criteria for next-generation
hyperparameter optimization software. The criteria we propose include (1) define-by-run API …

Convergence of edge computing and deep learning: A comprehensive survey

X Wang, Y Han, VCM Leung, D Niyato… - … Surveys & Tutorials, 2020 - ieeexplore.ieee.org
Ubiquitous sensors and smart devices from factories and communities are generating
massive amounts of data, and ever-increasing computing power is driving the core of …

Edge AI: On-demand accelerating deep neural network inference via edge computing

E Li, L Zeng, Z Zhou, X Chen - IEEE Transactions on Wireless …, 2019 - ieeexplore.ieee.org
As a key technology of enabling Artificial Intelligence (AI) applications in 5G era, Deep
Neural Networks (DNNs) have quickly attracted widespread attention. However, it is …

Leveraging Deep Learning and IoT big data analytics to support the smart cities development: Review and future directions

SB Atitallah, M Driss, W Boulila, HB Ghézala - Computer Science Review, 2020 - Elsevier
The rapid growth of urban populations worldwide imposes new challenges on citizens' daily
lives, including environmental pollution, public security, road congestion, etc. New …

Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence

S Raschka, J Patterson, C Nolet - Information, 2020 - mdpi.com
Smarter applications are making better use of the insights gleaned from data, having an
impact on every industry and research discipline. At the core of this revolution lies the tools …

Mlperf inference benchmark

VJ Reddi, C Cheng, D Kanter, P Mattson… - 2020 ACM/IEEE 47th …, 2020 - ieeexplore.ieee.org
Machine-learning (ML) hardware and software system demand is burgeoning. Driven by ML
applications, the number of different ML inference systems has exploded. Over 100 …