Hecke algebras and local Langlands correspondence for non-singular depth-zero representations

M Solleveld, Y Xu - arXiv preprint arXiv:2411.19846, 2024 - arxiv.org
Let G be a connected reductive group over a non-archimedean local field. We say that an
irreducible depth-zero (complex) G-representation is non-singular if its cuspidal support is …

Emerton-Gee Stacks, Serre Weights, and Breuil-Mézard Conjectures for GSp4

H Lee - 2023 - search.proquest.com
We construct a moduli stack of rank 4 symplectic projective étale (φ, γ)-modules and prove
its geometric properties for any prime p> 2 and finite extension K/Q p. When K/Q p is …

Simple cuspidal representations of symplectic groups: Langlands parameter

C Blondel, G Henniart, S Stevens - arXiv preprint arXiv:2310.20455, 2023 - arxiv.org
Let $ F $ be a non-archimedean local field of odd residual characteristic. We compute the
Jordan set of a simple cuspidal representation of a symplectic group over $ F $, using …

Emerton--Gee stacks, Serre weights, and Breuil--M\'ezard conjectures for

H Lee - arXiv preprint arXiv:2304.13879, 2023 - arxiv.org
We construct a moduli stack of rank 4 symplectic projective\'etale $(\varphi,\Gamma) $-
modules and prove its geometric properties for any prime $ p> 2$ and finite extension …