Comparative analysis of spectral and temporal combinations in CSP-based methods for decoding hand motor imagery tasks

CF Blanco-Diaz, JM Antelis, AF Ruiz-Olaya - Journal of Neuroscience …, 2022 - Elsevier
Background A widely used paradigm for brain-computer interfaces (BCI) is based on the
detection of event-related (des) synchronization (ERD/S) in response to hand motor imagery …

EEG motor imagery classification using dynamic connectivity patterns and convolutional autoencoder

S Mirzaei, P Ghasemi - Biomedical Signal Processing and Control, 2021 - Elsevier
Abstract Recently, Brain computer Interface (BCI), plays an important role in recognizing
brain activities and rehabilitation. Motor imagery (MI) classification based on …

EEG-based volitional control of prosthetic legs for walking in different terrains

H Gao, L Luo, M Pi, Z Li, Q Li, K Zhao… - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
More natural and intuitive control is expected to maximize the auxiliary effect of the powered
prosthetic leg for lower limb amputees. In order to realize the stable and flexible walking of …

Evaluation of temporal, spatial and spectral filtering in CSP-based methods for decoding pedaling-based motor tasks using EEG signals

CF Blanco-Díaz, CD Guerrero-Mendez… - Biomedical Physics …, 2024 - iopscience.iop.org
Stroke is a neurological syndrome that usually causes a loss of voluntary control of
lower/upper body movements, making it difficult for affected individuals to perform Activities …

A new channel selection method using autoencoder for motor imagery based brain computer interface

PK Parashiva, AP Vinod - 2019 IEEE International Conference …, 2019 - ieeexplore.ieee.org
To improve the spatial resolution of the electroen-cephalogram (EEG) signal, it is
conventional to use a large number of scalp electrode while recording oscillatory rhythms in …

The unilateral upper limb classification from fMRI-weighted EEG signals using convolutional neural network

B Yang, J Ma, W Qiu, J Zhang, X Wang - Biomedical Signal Processing and …, 2022 - Elsevier
Background Unilateral upper limb multitasking brings essential improvements to stroke
rehabilitation and prosthetic control. However, the influence and recognition of multiple tasks …

Motor imagery decoding using source optimized transfer learning based on multi-loss fusion CNN

J Ma, B Yang, F Rong, S Gao, W Wang - Cognitive Neurodynamics, 2024 - Springer
Transfer learning is increasingly used to decode multi-class motor imagery tasks. Previous
transfer learning ignored the optimizability of the source model, weakened the adaptability to …

Brain2object: Printing your mind from brain signals with spatial correlation embedding

X Zhang, L Yao, C Huang, SS Kanhere… - arXiv preprint arXiv …, 2018 - arxiv.org
Electroencephalography (EEG) signals are known to manifest differential patterns when
individuals visually concentrate on different objects. In this work, we present an end-to-end …

Classification of Motor Imagery EEG Signals Using Divergence Based CNN

VM Vinod, G Murugesan - 2024 15th International Conference …, 2024 - ieeexplore.ieee.org
Motor imagery-based brain-computer interfaces (BCIs) have garnered significant attention in
neuro engineering for their potential to enable communication and control in individuals with …

Determinar la eficiencia de algoritmos de clasificación para analizar señales de electroencefalogramas de movimiento imaginario y proponer un prototipo de software …

CR Quispe Onofre - 2019 - repositorio.unsaac.edu.pe
El presente trabajo busca determinar la eficiencia de algoritmos de clasificación para
analizar señales de electroencefalogramas de movimiento imaginario. Para este objetivo se …