Blockchain-empowered federated learning: Challenges, solutions, and future directions

J Zhu, J Cao, D Saxena, S Jiang, H Ferradi - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning is a privacy-preserving machine learning technique that trains models
across multiple devices holding local data samples without exchanging them. There are …

Security and privacy on 6g network edge: A survey

B Mao, J Liu, Y Wu, N Kato - IEEE communications surveys & …, 2023 - ieeexplore.ieee.org
To meet the stringent service requirements of 6G applications such as immersive cloud
eXtended Reality (XR), holographic communication, and digital twin, there is no doubt that …

Federated learning for internet of things: A comprehensive survey

DC Nguyen, M Ding, PN Pathirana… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …

Federated learning meets blockchain in edge computing: Opportunities and challenges

DC Nguyen, M Ding, QV Pham… - IEEE Internet of …, 2021 - ieeexplore.ieee.org
Mobile-edge computing (MEC) has been envisioned as a promising paradigm to handle the
massive volume of data generated from ubiquitous mobile devices for enabling intelligent …

Federated learning in edge computing: a systematic survey

HG Abreha, M Hayajneh, MA Serhani - Sensors, 2022 - mdpi.com
Edge Computing (EC) is a new architecture that extends Cloud Computing (CC) services
closer to data sources. EC combined with Deep Learning (DL) is a promising technology …

AI models for green communications towards 6G

B Mao, F Tang, Y Kawamoto… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
Green communications have always been a target for the information industry to alleviate
energy overhead and reduce fossil fuel usage. In the current 5G and future 6G eras, there is …

Blockchain-enabled federated learning: A survey

Y Qu, MP Uddin, C Gan, Y Xiang, L Gao… - ACM Computing …, 2022 - dl.acm.org
Federated learning (FL) has experienced a boom in recent years, which is jointly promoted
by the prosperity of machine learning and Artificial Intelligence along with emerging privacy …

When digital economy meets Web3. 0: Applications and challenges

C Chen, L Zhang, Y Li, T Liao, S Zhao… - IEEE Open Journal …, 2022 - ieeexplore.ieee.org
With the continuous development of web technology, Web3. 0 has attracted a considerable
amount of attention due to its unique decentralized characteristics. The digital economy is an …

Integration of blockchain and edge computing in internet of things: A survey

H Xue, D Chen, N Zhang, HN Dai, K Yu - Future Generation Computer …, 2023 - Elsevier
As an important technology to ensure data security, consistency, traceability, etc., blockchain
has been increasingly used in Internet of Things (IoT) applications. The integration of …

Mobility-aware cooperative caching in vehicular edge computing based on asynchronous federated and deep reinforcement learning

Q Wu, Y Zhao, Q Fan, P Fan, J Wang… - IEEE Journal of …, 2022 - ieeexplore.ieee.org
Vehicular edge computing (VEC) can learn and cache most popular contents for vehicular
users (VUs) in the roadside units (RSUs) to support real-time vehicular applications …