A comprehensive survey on test-time adaptation under distribution shifts

J Liang, R He, T Tan - International Journal of Computer Vision, 2024 - Springer
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …

Domain generalization: A survey

K Zhou, Z Liu, Y Qiao, T Xiang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet
challenging for machines to reproduce. This is because most learning algorithms strongly …

[PDF][PDF] 迁移学习研究进展

庄福振, 罗平, 何清, 史忠植 - 软件学报, 2014 - jos.org.cn
近年来, 迁移学习已经引起了广泛的关注和研究. 迁移学习是运用已存有的知识对不同但相关
领域问题进行求解的一种新的机器学习方法. 它放宽了传统机器学习中的两个基本假设:(1) …

On the robustness of chatgpt: An adversarial and out-of-distribution perspective

J Wang, X Hu, W Hou, H Chen, R Zheng… - arXiv preprint arXiv …, 2023 - arxiv.org
ChatGPT is a recent chatbot service released by OpenAI and is receiving increasing
attention over the past few months. While evaluations of various aspects of ChatGPT have …

Dataset distillation via factorization

S Liu, K Wang, X Yang, J Ye… - Advances in neural …, 2022 - proceedings.neurips.cc
In this paper, we study dataset distillation (DD), from a novel perspective and introduce
a\emph {dataset factorization} approach, termed\emph {HaBa}, which is a plug-and-play …

Generalized out-of-distribution detection: A survey

J Yang, K Zhou, Y Li, Z Liu - International Journal of Computer Vision, 2024 - Springer
Abstract Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of
machine learning systems. For instance, in autonomous driving, we would like the driving …

On the opportunities and risks of foundation models

R Bommasani, DA Hudson, E Adeli, R Altman… - arXiv preprint arXiv …, 2021 - arxiv.org
AI is undergoing a paradigm shift with the rise of models (eg, BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …

Towards out-of-distribution generalization: A survey

J Liu, Z Shen, Y He, X Zhang, R Xu, H Yu… - arXiv preprint arXiv …, 2021 - arxiv.org
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …

A holistic approach to undesired content detection in the real world

T Markov, C Zhang, S Agarwal, FE Nekoul… - Proceedings of the …, 2023 - ojs.aaai.org
We present a holistic approach to building a robust and useful natural language
classification system for real-world content moderation. The success of such a system relies …

Data-free knowledge distillation for heterogeneous federated learning

Z Zhu, J Hong, J Zhou - International conference on machine …, 2021 - proceedings.mlr.press
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global
server iteratively averages the model parameters of local users without accessing their data …