Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset

T Bouwmans, A Sobral, S Javed, SK Jung… - Computer Science …, 2017 - Elsevier
Background/foreground separation is the first step in video surveillance system to detect
moving objects. Recent research on problem formulations based on decomposition into low …

On the applications of robust PCA in image and video processing

T Bouwmans, S Javed, H Zhang, Z Lin… - Proceedings of the …, 2018 - ieeexplore.ieee.org
Robust principal component analysis (RPCA) via decomposition into low-rank plus sparse
matrices offers a powerful framework for a large variety of applications such as image …

[图书][B] Handbook of robust low-rank and sparse matrix decomposition: Applications in image and video processing

T Bouwmans, NS Aybat, E Zahzah - 2016 - books.google.com
Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image
and Video Processing shows you how robust subspace learning and tracking by …

Robust low-rank matrix completion by Riemannian optimization

L Cambier, PA Absil - SIAM Journal on Scientific Computing, 2016 - SIAM
Low-rank matrix completion is the problem where one tries to recover a low-rank matrix from
noisy observations of a subset of its entries. In this paper, we propose RMC, a new method …

Random consensus robust PCA

D Pimentel-Alarcón, R Nowak - Artificial Intelligence and …, 2017 - proceedings.mlr.press
This paper presents R2PCA, a random consensus method for robust principal component
analysis. R2PCA takes RANSAC's principle of using as little data as possible one step …

Mixture matrix completion

D Pimentel-Alarcón - Advances in Neural Information …, 2018 - proceedings.neurips.cc
Completing a data matrix X has become an ubiquitous problem in modern data science, with
motivations in recommender systems, computer vision, and networks inference, to name a …

[PDF][PDF] Robust inexact alternating optimization for matrix completion with outliers

J Li, JF Cai, H Zhao - Journal of Computational Mathematics, 2020 - admin.global-sci.org
We investigate the problem of robust matrix completion with a fraction of observation
corrupted by sparsity outlier noise. We propose an algorithmic framework based on the …

[PDF][PDF] Computer Science Review

T Bouwmans, A Sobral, S Javed, SK Jung, EH Zahzah - 2016 - academia.edu
Background/foreground separation is the first step in video surveillance system to detect
moving objects. Recent research on problem formulations based on decomposition into low …

Robust Matrix Completion through Nonconvex Approaches and Efficient Algorithms

Y Yang, Y Feng, JAK Suykens - … of Robust Low-Rank and Sparse …, 2016 - books.google.com
The goal of matrix completion is to impute missing values of a possibly low-rank matrix with
only partial entries observed. This problem arises in online recommendation systems …

[PDF][PDF] De l'importance des méthodes de suppression de fond pour la détection d'objets mobiles dans des vidéos acquises par des cameras fixes: Etat de l'art …

T Bouwmans - 2014 - hal.science
Avec les nouvelles technologies et la puissance de calcul des ordinateurs, la détection
d'objets mobiles en temps réel dans des vidéos acquises par des caméras fixes connait un …