Two weight Sobolev norm inequalities for smooth Calderón–Zygmund operators and doubling weights

ET Sawyer, BD Wick - Mathematische Zeitschrift, 2023 - Springer
Let μ be a positive locally finite Borel measure on R n that is doubling, and define the
homogeneous W s μ-Sobolev norm squared f W s μ 2 of a function f∈ L loc 2 μ by∫ R n∫ R …

Wavelet representation of singular integral operators

F Di Plinio, BD Wick, T Williams - Mathematische Annalen, 2023 - Springer
This article develops a novel approach to the representation of singular integral operators of
Calderón–Zygmund type in terms of continuous model operators, in both the classical and …

[PDF][PDF] A T1 theorem for general Calder\'on-Zygmund operators with doubling weights, and optimal cancellation conditions, II

M Alexis, ET Sawyer, I Uriarte-Tuero - arXiv preprint arXiv:2111.06277, 2021 - arxiv.org
arXiv:2111.06277v4 [math.CA] 26 Sep 2022 Page 1 arXiv:2111.06277v4 [math.CA] 26 Sep
2022 A T1 THEOREM FOR GENERAL SMOOTH CALDERON-ZYGMUND OPERATORS WITH …

Schatten Properties of Calderón–Zygmund Singular Integral Commutator on stratified Lie groups

J Li, X Xiong, F Yang - Journal de Mathématiques Pures et Appliquées, 2024 - Elsevier
We provide full characterisation of the Schatten properties of [M b, T], the commutator of
Calderón–Zygmund singular integral T with symbol b (M bf (x):= b (x) f (x)) on stratified Lie …

Two weight L^{p} inequalities for smooth Calder\'on-Zygmund operators and doubling measures

ET Sawyer, BD Wick - arXiv preprint arXiv:2211.01920, 2022 - arxiv.org
If T is a smooth Stein elliptic fractional singular integral, 1< p< infinity, and sigma and omega
are doubling measures, then the two weight L^{p} norm inequality holds if and only if the …

A T1 theorem for general Calderón—Zygmund operators with comparable doubling weights, and optimal cancellation conditions

ET Sawyer - Journal d'Analyse Mathématique, 2022 - Springer
We begin an investigation into extending the T 1 theorem of David and Journé, and the
corresponding optimal cancellation conditions of Stein, to more general pairs of distinct …

Two Weight Inequalities for -Fractional Vector Riesz Transforms and Doubling Measures

ET Sawyer, BD Wick - The Journal of Geometric Analysis, 2025 - Springer
Two Weight $$L^{p}$$ Inequalities for $$\lambda $$ -Fractional Vector Riesz Transforms
and Doubling Measures | The Journal of Geometric Analysis Skip to main content Springer …

Haar basis and frame testing

M Alexis, JL Luna-Garcia, ET Sawyer - arXiv preprint arXiv:2309.03743, 2023 - arxiv.org
We show that for two doubling measures on n dimensional Euclidean space, any gradient-
elliptic smooth fractional Calderon-Zygmund operator T, and any fixed dyadic grid D, the …

Bilinear wavelet representation of Calderón–Zygmund forms

F Di Plinio, W Green, BD Wick - Pure and Applied Analysis, 2023 - msp.org
We represent a bilinear Calderón–Zygmund operator at a given smoothness level as a finite
sum of cancellative, complexity-zero operators, involving smooth wavelet forms, and …

A T1 theorem for general smooth Calderón-Zygmund operators with doubling weights, and optimal cancellation conditions, II

M Alexis, ET Sawyer, I Uriarte-Tuero - Journal of Functional Analysis, 2023 - Elsevier
We extend the T1 theorem of David and Journé, and the corresponding optimal cancellation
conditions of Stein, to pairs of doubling measures, completing the weighted theory begun in …