Domain adaptation for medical image analysis: a survey

H Guan, M Liu - IEEE Transactions on Biomedical Engineering, 2021 - ieeexplore.ieee.org
Machine learning techniques used in computer-aided medical image analysis usually suffer
from the domain shift problem caused by different distributions between source/reference …

Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: A review

A Shoeibi, M Khodatars, M Jafari, P Moridian… - Computers in Biology …, 2021 - Elsevier
Multiple Sclerosis (MS) is a type of brain disease which causes visual, sensory, and motor
problems for people with a detrimental effect on the functioning of the nervous system. In …

Transfer learning for medical images analyses: A survey

X Yu, J Wang, QQ Hong, R Teku, SH Wang, YD Zhang - Neurocomputing, 2022 - Elsevier
The advent of deep learning has brought great change to the community of computer
science and also revitalized numerous fields where traditional machine learning methods …

A survey on incorporating domain knowledge into deep learning for medical image analysis

X Xie, J Niu, X Liu, Z Chen, S Tang, S Yu - Medical Image Analysis, 2021 - Elsevier
Although deep learning models like CNNs have achieved great success in medical image
analysis, the small size of medical datasets remains a major bottleneck in this area. To …

Transfer learning in medical image segmentation: New insights from analysis of the dynamics of model parameters and learned representations

D Karimi, SK Warfield, A Gholipour - Artificial intelligence in medicine, 2021 - Elsevier
We present a critical assessment of the role of transfer learning in training fully convolutional
networks (FCNs) for medical image segmentation. We first show that although transfer …

Transfer learning in magnetic resonance brain imaging: A systematic review

JM Valverde, V Imani, A Abdollahzadeh, R De Feo… - Journal of …, 2021 - mdpi.com
(1) Background: Transfer learning refers to machine learning techniques that focus on
acquiring knowledge from related tasks to improve generalization in the tasks of interest. In …

MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning

D Müller, F Kramer - BMC medical imaging, 2021 - Springer
Background The increased availability and usage of modern medical imaging induced a
strong need for automatic medical image segmentation. Still, current image segmentation …

Contrastive semi-supervised learning for domain adaptive segmentation across similar anatomical structures

R Gu, J Zhang, G Wang, W Lei, T Song… - … on Medical Imaging, 2022 - ieeexplore.ieee.org
Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance for
medical image segmentation, yet need plenty of manual annotations for training. Semi …

Review of deep learning approaches for the segmentation of multiple sclerosis lesions on brain MRI

C Zeng, L Gu, Z Liu, S Zhao - Frontiers in Neuroinformatics, 2020 - frontiersin.org
In recent years, there have been multiple works of literature reviewing methods for
automatically segmenting multiple sclerosis (MS) lesions. However, there is no literature …

[HTML][HTML] Multiple sclerosis cortical and WM lesion segmentation at 3T MRI: a deep learning method based on FLAIR and MP2RAGE

F La Rosa, A Abdulkadir, MJ Fartaria… - NeuroImage: Clinical, 2020 - Elsevier
The presence of cortical lesions in multiple sclerosis patients has emerged as an important
biomarker of the disease. They appear in the earliest stages of the illness and have been …