Dive into deep learning

A Zhang, ZC Lipton, M Li, AJ Smola - arXiv preprint arXiv:2106.11342, 2021 - arxiv.org
This open-source book represents our attempt to make deep learning approachable,
teaching readers the concepts, the context, and the code. The entire book is drafted in …

Nearly minimax optimal reinforcement learning for linear mixture markov decision processes

D Zhou, Q Gu, C Szepesvari - Conference on Learning …, 2021 - proceedings.mlr.press
We study reinforcement learning (RL) with linear function approximation where the
underlying transition probability kernel of the Markov decision process (MDP) is a linear …

Nearly minimax optimal reinforcement learning for linear markov decision processes

J He, H Zhao, D Zhou, Q Gu - International Conference on …, 2023 - proceedings.mlr.press
We study reinforcement learning (RL) with linear function approximation. For episodic time-
inhomogeneous linear Markov decision processes (linear MDPs) whose transition …

Provably efficient exploration in policy optimization

Q Cai, Z Yang, C Jin, Z Wang - International Conference on …, 2020 - proceedings.mlr.press
While policy-based reinforcement learning (RL) achieves tremendous successes in practice,
it is significantly less understood in theory, especially compared with value-based RL. In …

Leveraging offline data in online reinforcement learning

A Wagenmaker, A Pacchiano - International Conference on …, 2023 - proceedings.mlr.press
Two central paradigms have emerged in the reinforcement learning (RL) community: online
RL and offline RL. In the online RL setting, the agent has no prior knowledge of the …

Human-in-the-loop: Provably efficient preference-based reinforcement learning with general function approximation

X Chen, H Zhong, Z Yang, Z Wang… - … on Machine Learning, 2022 - proceedings.mlr.press
We study human-in-the-loop reinforcement learning (RL) with trajectory preferences, where
instead of receiving a numeric reward at each step, the RL agent only receives preferences …

Unpacking reward shaping: Understanding the benefits of reward engineering on sample complexity

A Gupta, A Pacchiano, Y Zhai… - Advances in Neural …, 2022 - proceedings.neurips.cc
The success of reinforcement learning in a variety of challenging sequential decision-
making problems has been much discussed, but often ignored in this discussion is the …

Pc-pg: Policy cover directed exploration for provable policy gradient learning

A Agarwal, M Henaff, S Kakade… - Advances in neural …, 2020 - proceedings.neurips.cc
Direct policy gradient methods for reinforcement learning are a successful approach for a
variety of reasons: they are model free, they directly optimize the performance metric of …

Reinforcement learning with general value function approximation: Provably efficient approach via bounded eluder dimension

R Wang, RR Salakhutdinov… - Advances in Neural …, 2020 - proceedings.neurips.cc
Value function approximation has demonstrated phenomenal empirical success in
reinforcement learning (RL). Nevertheless, despite a handful of recent progress on …

Reward-free rl is no harder than reward-aware rl in linear markov decision processes

AJ Wagenmaker, Y Chen… - International …, 2022 - proceedings.mlr.press
Reward-free reinforcement learning (RL) considers the setting where the agent does not
have access to a reward function during exploration, but must propose a near-optimal policy …