On the MIT bag model in the non-relativistic limit

N Arrizabalaga, L Le Treust, N Raymond - … in Mathematical Physics, 2017 - Springer
On the MIT Bag Model in the Non-relativistic Limit Page 1 Digital Object Identifier (DOI)
10.1007/s00220-017-2916-8 Commun. Math. Phys. 354, 641–669 (2017) Communications in …

Existence of optimal shapes under a uniform ball condition for geometric functionals involving boundary value problems

J Dalphin - ESAIM: Control, Optimisation and Calculus of …, 2020 - esaim-cocv.org
In this article, we are interested in shape optimization problems where the functional is
defined on the boundary of the domain, involving the geometry of the associated …

Study of geometric functionals depending on curvature by shape optimization methods. Applications to the functionals of Willmore and Canham-Helfrich.

J Dalphin - 2014 - theses.hal.science
In biology, when a large amount of phospholipids is inserted in aqueous media, they
immediatly gather in pairs to form bilayers also called vesicles. In 1973, Helfrich suggested a …

On the MIT bag model: self-adjointness and non-relativistic limit

N Arrizabalaga, LL Treust, N Raymond - arXiv preprint arXiv:1607.02603, 2016 - arxiv.org
This paper is devoted to the mathematical investigation of the MIT bag model, that is the
Dirac operator on a smooth and bounded domain with certain boundary conditions. We …

Uniform ball condition and existence of optimal shapes for geometric functionals involving boundary-value problems

J Dalphin - 2017 - hal.science
In this article, we are interested in shape optimization problems where the functionals are
defined on the boundary of the domain, involving the geometry of the associated surface …

[PDF][PDF] Jérémy Dalphin

A Henrot, T Takahashi, G Allaire, G Bellettini, D Bucur… - 2014 - pelikano.free.fr
J'ai passé trois années de thèse merveilleuses et je tiens à exprimer toute ma gratitude aux
personnes qui m'ont aidé, soutenu, écouté, qui m'ont accordé de leur temps et qui m'ont …