On weak and viscosity solutions of nonlocal double phase equations

Y Fang, C Zhang - International Mathematics Research Notices, 2022 - ieeexplore.ieee.org
We consider the nonlocal double phase equation PV&R^n|u(x)-u(y)|^p-2(u(x)-
u(y))K_sp(x,y)\,dy\&+PVR^na(x,y)|u(x)-u(y)|^q-2(u(x)-u(y))K_tq(x,y)\,dy=0, where 1<p≦q and …

Gradient estimates for multi-phase problems

S Baasandorj, SS Byun, J Oh - Calculus of Variations and Partial …, 2021 - Springer
Gradient estimates for multi-phase problems | Calculus of Variations and Partial Differential
Equations Skip to main content SpringerLink Account Menu Find a journal Publish with us Track …

Equivalence of weak and viscosity solutions for the nonhomogeneous double phase equation

Y Fang, VD Rădulescu, C Zhang - Mathematische Annalen, 2024 - Springer
We establish the equivalence between weak and viscosity solutions to the
nonhomogeneous double phase equation with lower-order term-div (| D u| p-2 D u+ a (x)| D …

Regularity for multi-phase problems at nearly linear growth

F De Filippis, M Piccinini - arXiv preprint arXiv:2401.02186, 2024 - arxiv.org
Minima of the log-multiphase variational integral $$ w\mapsto\int_ {\Omega}\left [| Dw|\log
(1+| Dw|)+ a (x)| Dw|^ q+ b (x)| Dw|^ s\right]\,{\rm d} x\,, $$ have locally H\" older continuous …

Gradient estimates for Orlicz double phase problems with variable exponents

S Baasandorj, SS Byun, HS Lee - Nonlinear Analysis, 2022 - Elsevier
Optimal regularity estimates are established for the gradient of solutions to non-uniformly
elliptic equations of Orlicz double phase with variable exponents type in divergence form …

[PDF][PDF] Optimal gradient estimates for multi-phase integrals

C De Filippis - arXiv preprint arXiv:2107.04898, 2021 - arxiv.org
arXiv:2107.04898v1 [math.AP] 10 Jul 2021 Page 1 arXiv:2107.04898v1 [math.AP] 10 Jul 2021
OPTIMAL GRADIENT ESTIMATES FOR MULTI-PHASE INTEGRALS CRISTIANA DE FILIPPIS …

Existence of solutions for double-phase problems by topological degree

BS Wang, GL Hou, B Ge - Journal of Fixed Point Theory and Applications, 2021 - Springer
The double-phase problem with a reaction term depending on the gradient is considered in
this paper. Using the topological degree theory for a class of demicontinuous operators, we …

Irregular obstacle problems for Orlicz double phase

S Baasandorj, SS Byun - Journal of Mathematical Analysis and …, 2022 - Elsevier
An irregular obstacle problem with a non-uniformly elliptic operator in divergence form of (G,
H)-growth is studied. We provide local Calderón-Zygmund type estimates for an Orlicz …

Nonlinear potential theoretic methods in nonuniformly ellliptic problems

G Mingione - Geometric and Analytic Aspects of Functional …, 2024 - Springer
Nonuniform ellipticity is a classical topic in the theory of partial differential equations. While
several results in regularity theory have been adding up over decades, many basic issues …

-regularity for a class of degenerate/singular fully non-linear elliptic equations

S Baasandorj, SS Byun, KA Lee, SC Lee - Interfaces and Free …, 2024 - ems.press
C1;-regularity for a class of degenerate/singular fully non-linear elliptic equations Page 1
Interfaces Free Bound. (Online first) DOI 10.4171/IFB/496 © 2024 European Mathematical …