JF Biasse, C Fieker - LMS Journal of Computation and Mathematics, 2014 - cambridge.org
We describe how to compute the ideal class group and the unit group of an order in a number field in subexponential time. Our method relies on the generalized Riemann …
We perform a special number field sieve discrete logarithm computation in a 1024-bit prime field. To our knowledge, this is the first kilobit-sized discrete logarithm computation ever …
R Cosset, D Robert - Mathematics of Computation, 2015 - ams.org
In this paper, we compute $\ell $-isogenies between abelian varieties over a field of characteristic different from $2 $ in polynomial time in $\ell $, when $\ell $ is an odd prime …
Efficient algorithms for abelian varieties and their moduli spaces Page 1 HAL Id: tel-03498268 https://hal.science/tel-03498268 Submitted on 20 Dec 2021 HAL is a multi-disciplinary open …
A Joux, A Odlyzko, C Pierrot - Open Problems in Mathematics and …, 2014 - Springer
The first practical public key cryptosystem ever published, the Diffie–Hellman key exchange algorithm, relies for its security on the assumption that discrete logarithms are hard to …
B Smith - Arithmetic of Finite Fields: 7th International Workshop …, 2018 - Springer
Diffie–Hellman key exchange is at the foundations of public-key cryptography, but conventional group-based Diffie–Hellman is vulnerable to Shor's quantum algorithm. A …
Hafner and McCurley described a subexponential time algorithm to compute the ideal class group of a quadratic field, which was generalized to families of fixed degree number fields …
Depuis le milieu des années 1980, les variétés abéliennes ont été abondamment utilisées en cryptographie à clé publique: le problème du logarithme discret et les protocoles qui s' …
Le logarithme discret sur les courbes elliptiques fournit la panoplie standard de la cryptographie à clé publique: chiffrement asymétrique, signature, authentification. Son …