Deep learning in bioinformatics: Introduction, application, and perspective in the big data era

Y Li, C Huang, L Ding, Z Li, Y Pan, X Gao - Methods, 2019 - Elsevier
Deep learning, which is especially formidable in handling big data, has achieved great
success in various fields, including bioinformatics. With the advances of the big data era in …

A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers

X Zhang, L Yao, X Wang, J Monaghan… - Journal of neural …, 2021 - iopscience.iop.org
Brain signals refer to the biometric information collected from the human brain. The research
on brain signals aims to discover the underlying neurological or physical status of the …

High-resolution image reconstruction with latent diffusion models from human brain activity

Y Takagi, S Nishimoto - … of the IEEE/CVF Conference on …, 2023 - openaccess.thecvf.com
Reconstructing visual experiences from human brain activity offers a unique way to
understand how the brain represents the world, and to interpret the connection between …

Reconstructing the mind's eye: fMRI-to-image with contrastive learning and diffusion priors

P Scotti, A Banerjee, J Goode… - Advances in …, 2024 - proceedings.neurips.cc
We present MindEye, a novel fMRI-to-image approach to retrieve and reconstruct viewed
images from brain activity. Our model comprises two parallel submodules that are …

Deep image reconstruction from human brain activity

G Shen, T Horikawa, K Majima… - PLoS computational …, 2019 - journals.plos.org
The mental contents of perception and imagery are thought to be encoded in hierarchical
representations in the brain, but previous attempts to visualize perceptual contents have …

[HTML][HTML] Protein–protein interaction prediction with deep learning: A comprehensive review

F Soleymani, E Paquet, H Viktor, W Michalowski… - Computational and …, 2022 - Elsevier
Most proteins perform their biological function by interacting with themselves or other
molecules. Thus, one may obtain biological insights into protein functions, disease …

[HTML][HTML] FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution

M Jiang, M Zhi, L Wei, X Yang, J Zhang, Y Li… - … Medical Imaging and …, 2021 - Elsevier
High-resolution magnetic resonance images can provide fine-grained anatomical
information, but acquiring such data requires a long scanning time. In this paper, a …

[PDF][PDF] A survey on deep learning based brain computer interface: Recent advances and new frontiers

X Zhang, L Yao, X Wang, J Monaghan… - arXiv preprint arXiv …, 2019 - researchgate.net
Brain-Computer Interface (BCI) bridges human's neural world and the outer physical world
by decoding individuals' brain signals into commands recognizable by computer devices …

[HTML][HTML] Machine learning and artificial intelligence in neuroscience: A primer for researchers

F Badrulhisham, E Pogatzki-Zahn, D Segelcke… - Brain, Behavior, and …, 2024 - Elsevier
Artificial intelligence (AI) is often used to describe the automation of complex tasks that we
would attribute intelligence to. Machine learning (ML) is commonly understood as a set of …

[HTML][HTML] End-to-end deep image reconstruction from human brain activity

G Shen, K Dwivedi, K Majima, T Horikawa… - Frontiers in …, 2019 - frontiersin.org
Deep neural networks (DNNs) have recently been applied successfully to brain decoding
and image reconstruction from functional magnetic resonance imaging (fMRI) activity …