Machine learning for refining interpretation of magnetic resonance imaging scans in the management of multiple sclerosis: a narrative review

AC Szekely-Kohn, M Castellani… - Royal Society …, 2025 - royalsocietypublishing.org
Multiple sclerosis (MS) is an autoimmune disease of the brain and spinal cord with both
inflammatory and neurodegenerative features. Although advances in imaging techniques …

New multiple sclerosis lesion segmentation and detection using pre-activation U-Net

P Ashtari, B Barile, S Van Huffel… - Frontiers in …, 2022 - frontiersin.org
Automated segmentation of new multiple sclerosis (MS) lesions in 3D MRI data is an
essential prerequisite for monitoring and quantifying MS progression. Manual delineation of …

Deep attention v-net architecture for enhanced multiple sclerosis segmentation

VP Nasheeda, V Rajangam - IEEE Access, 2024 - ieeexplore.ieee.org
The central nervous system is affected by multiple sclerosis (MS) which destroys the
neurocommunication. Among the diagnostic imaging systems, magnetic resonance imaging …

Image registration and appearance adaptation in non-correspondent image regions for new ms lesions detection

J Andresen, H Uzunova, J Ehrhardt, T Kepp… - Frontiers in …, 2022 - frontiersin.org
Manual detection of newly formed lesions in multiple sclerosis is an important but tedious
and difficult task. Several approaches for automating the detection of new lesions have …

Multiclass lesion detection using longitudinal MRI in multiple sclerosis

A Elkoroaristizabal, F Vivó, A Calvi… - Artificial Intelligence …, 2024 - ebooks.iospress.nl
Accurate detection of white matter (WM) lesions is essential for diagnosing and monitoring
Multiple Sclerosis (MS), but manual lesion identification is challenging and time-consuming …

Brain Lesion Segmentation and Detection on Multi-parametric MRI Data: Marrying Deep Learning with Low-rank Factorization

P Ashtari - 2023 - lirias.kuleuven.be
Brain lesion segmentation plays a crucial role in clinical neuroimaging, aiding in diagnosis,
treatment planning, disease monitoring, and research. Accurate identification of lesion …

Segmentation et détection de lésions cérébrales combinant apprentissage profond et factorisation à partir d'IRM multi-paramétriques

P Ashtari - 2023 - theses.hal.science
La segmentation des lésions cérébrales est essentielle en neuroimagerie clinique, facilitant
le diagnostic, la planification du traitement et la recherche. Cette thèse explore le …