Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries

P Xiao, X Yun, Y Chen, X Guo, P Gao, G Zhou… - Chemical Society …, 2023 - pubs.rsc.org
Lithium-based rechargeable batteries have dominated the energy storage field and attracted
considerable research interest due to their excellent electrochemical performance. As …

Lithium–oxygen batteries and related systems: potential, status, and future

WJ Kwak, Rosy, D Sharon, C Xia, H Kim… - Chemical …, 2020 - ACS Publications
The goal of limiting global warming to 1.5° C requires a drastic reduction in CO2 emissions
across many sectors of the world economy. Batteries are vital to this endeavor, whether used …

New concepts in electrolytes

M Li, C Wang, Z Chen, K Xu, J Lu - Chemical reviews, 2020 - ACS Publications
Over the past decades, Li-ion battery (LIB) has turned into one of the most important
advances in the history of technology due to its extensive and in-depth impact on our life. Its …

Current challenges and routes forward for nonaqueous lithium–air batteries

T Liu, JP Vivek, EW Zhao, J Lei, N Garcia-Araez… - Chemical …, 2020 - ACS Publications
Nonaqueous lithium–air batteries have garnered considerable research interest over the
past decade due to their extremely high theoretical energy densities and potentially low cost …

Gel polymer electrolytes for electrochemical energy storage

X Cheng, J Pan, Y Zhao, M Liao… - Advanced Energy …, 2018 - Wiley Online Library
With the booming development of flexible and wearable electronics, their safety issues and
operation stabilities have attracted worldwide attentions. Compared with traditional liquid …

Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives

H Zhang, GG Eshetu, X Judez, C Li… - Angewandte Chemie …, 2018 - Wiley Online Library
Lithium metal (Li0) rechargeable batteries (LMBs), such as systems with a Li0 anode and
intercalation and/or conversion type cathode, lithium‐sulfur (Li‐S), and lithium‐oxygen …

Advances in understanding mechanisms underpinning lithium–air batteries

D Aurbach, BD McCloskey, LF Nazar, PG Bruce - Nature Energy, 2016 - nature.com
The rechargeable lithium–air battery has the highest theoretical specific energy of any
rechargeable battery and could transform energy storage if a practical device could be …

The path toward practical Li-air batteries

Z Liang, W Wang, YC Lu - Joule, 2022 - cell.com
Wide adaptation of intermittent renewable energies into the power grid and more affordable
electric vehicles cannot be realized without low-cost, high-energy, and long-life energy …

A review on the status and challenges of cathodes in room‐temperature Na‐S batteries

YJ Lei, HW Liu, Z Yang, LF Zhao… - Advanced Functional …, 2023 - Wiley Online Library
The cathode materials for sodium‐sulfur batteries have attracted great attention since
cathode is one of the important components of the sodium‐sulfur battery, and there are …

Why charging Li–air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation

S Ahn, C Zor, S Yang, M Lagnoni, D Dewar… - Nature Chemistry, 2023 - nature.com
Although Li–air rechargeable batteries offer higher energy densities than lithium-ion
batteries, the insulating Li2O2 formed during discharge hinders rapid, efficient re-charging …