A Survey of NL2SQL with Large Language Models: Where are we, and where are we going?

X Liu, S Shen, B Li, P Ma, R Jiang, Y Zhang… - arXiv preprint arXiv …, 2024 - arxiv.org
Translating users' natural language queries (NL) into SQL queries (ie, NL2SQL) can
significantly reduce barriers to accessing relational databases and support various …

A survey on employing large language models for text-to-sql tasks

L Shi, Z Tang, N Zhang, X Zhang, Z Yang - arXiv preprint arXiv …, 2024 - arxiv.org
The increasing volume of data in relational databases and the expertise needed for writing
SQL queries pose challenges for users to access and analyze data. Text-to-SQL (Text2SQL) …

The death of schema linking? text-to-sql in the age of well-reasoned language models

K Maamari, F Abubaker, D Jaroslawicz… - arXiv preprint arXiv …, 2024 - arxiv.org
Schema linking is a crucial step in Text-to-SQL pipelines. Its goal is to retrieve the relevant
tables and columns of a target database for a user's query while disregarding irrelevant …

Chase-sql: Multi-path reasoning and preference optimized candidate selection in text-to-sql

M Pourreza, H Li, R Sun, Y Chung, S Talaei… - arXiv preprint arXiv …, 2024 - arxiv.org
In tackling the challenges of large language model (LLM) performance for Text-to-SQL tasks,
we introduce CHASE-SQL, a new framework that employs innovative strategies, using test …

E-sql: Direct schema linking via question enrichment in text-to-sql

HA Caferoğlu, Ö Ulusoy - arXiv preprint arXiv:2409.16751, 2024 - arxiv.org
Translating Natural Language Queries into Structured Query Language (Text-to-SQL or NLQ-
to-SQL) is a critical task extensively studied by both the natural language processing and …

Siriusbi: Building end-to-end business intelligence enhanced by large language models

J Jiang, H Xie, Y Shen, Z Zhang, M Lei, Y Zheng… - arXiv preprint arXiv …, 2024 - arxiv.org
The rapid advancement of AI technologies, particularly Large Language Models (LLMs), is
establishing a new paradigm for Business Intelligence (BI). Despite the emergence of …

Sql-gen: Bridging the dialect gap for text-to-sql via synthetic data and model merging

M Pourreza, R Sun, H Li, L Miculicich, T Pfister… - arXiv preprint arXiv …, 2024 - arxiv.org
Recent advances in Text-to-SQL have largely focused on the SQLite dialect, neglecting the
diverse landscape of SQL dialects like BigQuery and PostgreSQL. This limitation is due to …

Mag-sql: Multi-agent generative approach with soft schema linking and iterative sub-sql refinement for text-to-sql

W Xie, G Wu, B Zhou - arXiv preprint arXiv:2408.07930, 2024 - arxiv.org
Recent In-Context Learning based methods have achieved remarkable success in Text-to-
SQL task. However, there is still a large gap between the performance of these models and …

XiYan-SQL: A Multi-Generator Ensemble Framework for Text-to-SQL

Y Gao, Y Liu, X Li, X Shi, Y Zhu, Y Wang, S Li… - arXiv preprint arXiv …, 2024 - arxiv.org
To tackle the challenges of large language model performance in natural language to SQL
tasks, we introduce XiYan-SQL, an innovative framework that employs a multi-generator …

Rsl-sql: Robust schema linking in text-to-sql generation

Z Cao, Y Zheng, Z Fan, X Zhang, W Chen - arXiv preprint arXiv …, 2024 - arxiv.org
Text-to-SQL generation aims to translate natural language questions into SQL statements. In
large language models (LLMs) based Text-to-SQL, schema linking is a widely adopted …