[HTML][HTML] A review of ensemble learning and data augmentation models for class imbalanced problems: Combination, implementation and evaluation

AA Khan, O Chaudhari, R Chandra - Expert Systems with Applications, 2024 - Elsevier
Class imbalance (CI) in classification problems arises when the number of observations
belonging to one class is lower than the other. Ensemble learning combines multiple models …

Survey on synthetic data generation, evaluation methods and GANs

A Figueira, B Vaz - Mathematics, 2022 - mdpi.com
Synthetic data consists of artificially generated data. When data are scarce, or of poor
quality, synthetic data can be used, for example, to improve the performance of machine …

[PDF][PDF] Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM: Comparative Evaluation of SVM Kernels for Sentiment …

S Rabbani, D Safitri, N Rahmadhani… - … : Indonesian Journal of …, 2023 - journal.irpi.or.id
Abstract Kebijakan perubahan harga Bahan Bakar Minyak (BBM) oleh pemerintah pada
September 2022 lalu menimbulkan kontroversi pengguna sosial media termasuk Twitter …

A comparison of undersampling, oversampling, and SMOTE methods for dealing with imbalanced classification in educational data mining

T Wongvorachan, S He, O Bulut - Information, 2023 - mdpi.com
Educational data mining is capable of producing useful data-driven applications (eg, early
warning systems in schools or the prediction of students' academic achievement) based on …

Imbalanced data classification: A KNN and generative adversarial networks-based hybrid approach for intrusion detection

H Ding, L Chen, L Dong, Z Fu, X Cui - Future Generation Computer Systems, 2022 - Elsevier
With the continuous emergence of various network attacks, it is becoming more and more
important to ensure the security of the network. Intrusion detection, as one of the important …

Bias in machine learning software: Why? how? what to do?

J Chakraborty, S Majumder, T Menzies - … of the 29th ACM joint meeting …, 2021 - dl.acm.org
Increasingly, software is making autonomous decisions in case of criminal sentencing,
approving credit cards, hiring employees, and so on. Some of these decisions show bias …

A comprehensive analysis of synthetic minority oversampling technique (SMOTE) for handling class imbalance

D Elreedy, AF Atiya - Information Sciences, 2019 - Elsevier
Imbalanced classification problems are often encountered in many applications. The
challenge is that there is a minority class that has typically very little data and is often the …

Resampling imbalanced data for network intrusion detection datasets

S Bagui, K Li - Journal of Big Data, 2021 - Springer
Abstract Machine learning plays an increasingly significant role in the building of Network
Intrusion Detection Systems. However, machine learning models trained with imbalanced …

On the class overlap problem in imbalanced data classification

P Vuttipittayamongkol, E Elyan, A Petrovski - Knowledge-based systems, 2021 - Elsevier
Class imbalance is an active research area in the machine learning community. However,
existing and recent literature showed that class overlap had a higher negative impact on the …

Heart sound classification based on improved MFCC features and convolutional recurrent neural networks

M Deng, T Meng, J Cao, S Wang, J Zhang, H Fan - Neural Networks, 2020 - Elsevier
Heart sound classification plays a vital role in the early detection of cardiovascular disorders,
especially for small primary health care clinics. Despite that much progress has been made …