[图书][B] Partial differential equations in anisotropic Musielak-Orlicz spaces

Anisotropic and inhomogeneous spaces, which are at the core of the present study, may
appear exotic at first. However, the reader should abandon this impression once they realize …

Modular density of smooth functions in inhomogeneous and fully anisotropic Musielak–Orlicz–Sobolev spaces

M Borowski, I Chlebicka - Journal of Functional Analysis, 2022 - Elsevier
Modular density of smooth functions in inhomogeneous and fully anisotropic Musielak–Orlicz–Sobolev
spaces - ScienceDirect Skip to main contentSkip to article Elsevier logo Journals & Books …

Lipschitz regularity for orthotropic functionals with nonstandard growth conditions

P Bousquet, L Brasco - Revista matemática iberoamericana, 2020 - ems.press
Lipschitz regularity for orthotropic functionals with nonstandard growth conditions Page 1 Rev.
Mat. Iberoam. 36 (2020), no. 7, 1989–2032 doi 10.4171/rmi/1189 c European Mathematical …

[HTML][HTML] Absence of Lavrentiev's gap for anisotropic functionals

M Borowski, I Chlebicka, B Miasojedow - Nonlinear Analysis, 2024 - Elsevier
We establish the absence of the Lavrentiev gap between Sobolev and smooth maps for a
non-autonomous variational problem of a general structure, where the integrand is assumed …

Gradient bounds for solutions to irregular parabolic equations with (pq)-growth

C De Filippis - Calculus of Variations and Partial Differential …, 2020 - Springer
Gradient bounds for solutions to irregular parabolic equations with (p, q)-growth | Calculus of
Variations and Partial Differential Equations Skip to main content SpringerLink Account Menu …

Quantified Legendreness and the regularity of minima

C De Filippis, L Koch, J Kristensen - Archive for Rational Mechanics and …, 2024 - Springer
We introduce a new quantification of nonuniform ellipticity in variational problems via convex
duality, and prove higher differentiability and 2 d-smoothness results for vector valued …

Regularity for multi-phase problems at nearly linear growth

F De Filippis, M Piccinini - arXiv preprint arXiv:2401.02186, 2024 - arxiv.org
Minima of the log-multiphase variational integral $$ w\mapsto\int_ {\Omega}\left [| Dw|\log
(1+| Dw|)+ a (x)| Dw|^ q+ b (x)| Dw|^ s\right]\,{\rm d} x\,, $$ have locally H\" older continuous …

Developments and perspectives in nonlinear potential theory

G Mingione, G Palatucci - Nonlinear Analysis, 2020 - Elsevier
Nonlinear Potential theory aims at replicating the classical linear potential theory when
nonlinear equations are considered. In recent years there has been a substantial …

[HTML][HTML] Fine regularity for elliptic and parabolic anisotropic Robin problems with variable exponents

MM Boureanu, A Vélez-Santiago - Journal of Differential Equations, 2019 - Elsevier
We investigate a class of quasi-linear elliptic and parabolic anisotropic problems with
variable exponents over a general class of bounded non-smooth domains, which may …

[PDF][PDF] Optimal gradient estimates for multi-phase integrals

C De Filippis - arXiv preprint arXiv:2107.04898, 2021 - arxiv.org
arXiv:2107.04898v1 [math.AP] 10 Jul 2021 Page 1 arXiv:2107.04898v1 [math.AP] 10 Jul 2021
OPTIMAL GRADIENT ESTIMATES FOR MULTI-PHASE INTEGRALS CRISTIANA DE FILIPPIS …