Deep transfer learning for bearing fault diagnosis: A systematic review since 2016

X Chen, R Yang, Y Xue, M Huang… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
The traditional deep learning-based bearing fault diagnosis approaches assume that the
training and test data follow the same distribution. This assumption, however, is not always …

Intelligent fault diagnosis of machines with small & imbalanced data: A state-of-the-art review and possible extensions

T Zhang, J Chen, F Li, K Zhang, H Lv, S He, E Xu - ISA transactions, 2022 - Elsevier
The research on intelligent fault diagnosis has yielded remarkable achievements based on
artificial intelligence-related technologies. In engineering scenarios, machines usually work …

Learning from few examples: A summary of approaches to few-shot learning

A Parnami, M Lee - arXiv preprint arXiv:2203.04291, 2022 - arxiv.org
Few-Shot Learning refers to the problem of learning the underlying pattern in the data just
from a few training samples. Requiring a large number of data samples, many deep learning …

Fault diagnosis in rotating machines based on transfer learning: Literature review

I Misbah, CKM Lee, KL Keung - Knowledge-Based Systems, 2024 - Elsevier
With the emergence of machine learning methods, data-driven fault diagnosis has gained
significant attention in recent years. However, traditional data-driven diagnosis approaches …

[HTML][HTML] A systematic review of rolling bearing fault diagnoses based on deep learning and transfer learning: Taxonomy, overview, application, open challenges …

M Hakim, AAB Omran, AN Ahmed, M Al-Waily… - Ain Shams Engineering …, 2023 - Elsevier
Rolling bearing fault detection is critical for improving production efficiency and lowering
accident rates in complicated mechanical systems, as well as huge monitoring data, posing …

Meta-learning as a promising approach for few-shot cross-domain fault diagnosis: Algorithms, applications, and prospects

Y Feng, J Chen, J Xie, T Zhang, H Lv, T Pan - Knowledge-Based Systems, 2022 - Elsevier
The advances of intelligent fault diagnosis in recent years show that deep learning has
strong capability of automatic feature extraction and accurate identification for fault signals …

A systematic review of deep transfer learning for machinery fault diagnosis

C Li, S Zhang, Y Qin, E Estupinan - Neurocomputing, 2020 - Elsevier
With the popularization of the intelligent manufacturing, much attention has been paid in
such intelligent computing methods as deep learning ones for machinery fault diagnosis …

Deep learning algorithms for bearing fault diagnostics—A comprehensive review

S Zhang, S Zhang, B Wang, TG Habetler - IEEE Access, 2020 - ieeexplore.ieee.org
In this survey paper, we systematically summarize existing literature on bearing fault
diagnostics with deep learning (DL) algorithms. While conventional machine learning (ML) …

Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review

D Neupane, J Seok - Ieee Access, 2020 - ieeexplore.ieee.org
A smart factory is a highly digitized and connected production facility that relies on smart
manufacturing. Additionally, artificial intelligence is the core technology of smart factories …

Meta-learning for few-shot bearing fault diagnosis under complex working conditions

C Li, S Li, A Zhang, Q He, Z Liao, J Hu - Neurocomputing, 2021 - Elsevier
Deep learning-based bearing fault diagnosis has been systematically studied in recent
years. However, the success of most of these methods relies heavily on massive labeled …