O Riedler, A Siffert - arXiv preprint arXiv:2401.17750, 2024 - arxiv.org
We study globally defined $(\lambda,\mu) $-eigenfamilies on compact Riemannian manifolds. Among others, we provide (non-) existence results for such eigenfamilies …
O Riedler - arXiv preprint arXiv:2310.19565, 2023 - arxiv.org
The eigenfamilies of Gudmundsson and Sakovich can be used to generate harmonic morphisms, proper $ r $-harmonic maps, and minimal co-dimension $2 $ submanifolds. This …
A Kislitsyn - arXiv preprint arXiv:2407.09708, 2024 - arxiv.org
A new proof of a theorem that describes $(\lambda,\mu) $-eigenfunctions on sphere is obtained. This proof is based on a statement that a function $ f $ is a $(\lambda,\mu) …
In this work we construct new multi-dimensional families of compact minimal submanifolds of the classical Riemannian symmetric spaces S U ( n ) / SO ( n ) \documentclass[12pt]{minimal} …
In this note we study $(\lambda,\mu) $-eigenfamilies on compact Riemannian manifolds when $\lambda=\mu $. We show that any compact manifold admitting a $(\lambda,\lambda) …
Let (M, g) be a Riemannian manifold, λ, µ∈ C. Then a complex-valued function ϕ∶ M→ C is said to be a (λ, µ)-eigenfunction if it is eigen with respect to both the Laplace-Beltrami …