Minimal Submanifolds of the Classical Compact Riemannian Symmetric Spaces

JM Gegenfurtner - arXiv preprint arXiv:2406.11294, 2024 - arxiv.org
Minimal submanifolds constitute a central area within the realm of differential geometry, due
to their many applications in various branches of physics. In this thesis we will employ a …

Global eigenfamilies on compact manifolds

O Riedler, A Siffert - arXiv preprint arXiv:2401.17750, 2024 - arxiv.org
We study globally defined $(\lambda,\mu) $-eigenfamilies on compact Riemannian
manifolds. Among others, we provide (non-) existence results for such eigenfamilies …

Polynomial harmonic morphisms and eigenfamilies on spheres

O Riedler - arXiv preprint arXiv:2310.19565, 2023 - arxiv.org
The eigenfamilies of Gudmundsson and Sakovich can be used to generate harmonic
morphisms, proper $ r $-harmonic maps, and minimal co-dimension $2 $ submanifolds. This …

Minimal submanifolds in spheres and complex-valued eigenfunctions

A Kislitsyn - arXiv preprint arXiv:2407.09708, 2024 - arxiv.org
A new proof of a theorem that describes $(\lambda,\mu) $-eigenfunctions on sphere is
obtained. This proof is based on a statement that a function $ f $ is a $(\lambda,\mu) …

Compact minimal submanifolds of the Riemannian symmetric spaces , , , via complex-valued eigenfunctions

JM Gegenfurtner, S Gudmundsson - Annals of Global Analysis and …, 2024 - Springer
In this work we construct new multi-dimensional families of compact minimal submanifolds
of the classical Riemannian symmetric spaces S U ( n ) / SO ( n ) \documentclass[12pt]{minimal} …

-eigenfunctions on compact manifolds

TJ Munn, O Riedler - arXiv preprint arXiv:2409.16932, 2024 - arxiv.org
In this note we study $(\lambda,\mu) $-eigenfamilies on compact Riemannian manifolds
when $\lambda=\mu $. We show that any compact manifold admitting a $(\lambda,\lambda) …

[PDF][PDF] These lecture notes are available at: www. matematik. lu. se/matematiklu/personal/munn/slides/slides. html

TJ Munn - mat.univie.ac.at
Let (M, g) be a Riemannian manifold, λ, µ∈ C. Then a complex-valued function ϕ∶ M→ C is
said to be a (λ, µ)-eigenfunction if it is eigen with respect to both the Laplace-Beltrami …