Tropical and non-Archimedean Monge–Ampère equations for a class of Calabi–Yau hypersurfaces

J Hultgren, M Jonsson, E Mazzon, N McCleerey - Advances in Mathematics, 2024 - Elsevier
For a large class of maximally degenerate families of Calabi–Yau hypersurfaces of complex
projective space, we study non-Archimedean and tropical Monge–Ampère equations, taking …

On finite time Type I singularities of the Kähler–Ricci flow on compact Kähler surfaces

C Cifarelli, RJ Conlon, A Deruelle - Journal of the European …, 2024 - ems.press
We show that the underlying complex manifold of a complete non-compact two-dimensional
shrinking gradient Kähler–Ricci soliton. M; g; X/with soliton metric g with bounded scalar …

[HTML][HTML] The proper Landau-Ginzburg potential is the open mirror map

T Gräfnitz, H Ruddat, E Zaslow - Advances in Mathematics, 2024 - Elsevier
The mirror dual of a smooth toric Fano surface X equipped with an anticanonical divisor E is
a Landau–Ginzburg model with superpotential, W. Carl–Pumperla–Siebert give a definition …

Special Lagrangian Cycles and Calabi-Yau Transitions

TC Collins, S Gukov, S Picard, ST Yau - Communications in Mathematical …, 2023 - Springer
We construct special Lagrangian 3-spheres in non-Kähler compact threefolds equipped with
the Fu–Li–Yau geometry. These non-Kähler geometries emerge from topological transitions …

The proper Landau–Ginzburg potential, intrinsic mirror symmetry and the relative mirror map

F You - Communications in Mathematical Physics, 2024 - Springer
Given a smooth log Calabi–Yau pair (X, D), we use the intrinsic mirror symmetry construction
to define the mirror proper Landau–Ginzburg potential and show that it is a generating …

Log BPS numbers of log Calabi-Yau surfaces

J Choi, M Van Garrel, S Katz, N Takahashi - Transactions of the American …, 2021 - ams.org
Let $(S, E) $ be a log Calabi-Yau surface pair with $ E $ a smooth divisor. We define new
conjecturally integer-valued counts of $\mathbb {A}^ 1$-curves in $(S, E) $. These log BPS …

Recent progress on SYZ mirror symmetry for some non-compact Calabi-Yau surfaces

TC Collins, YS Lin - arXiv preprint arXiv:2208.14485, 2022 - arxiv.org
We survey the authors recent works, joint with A. Jacob, on Strominger-Yau-Zaslow mirror
symmetry for rational elliptic surfaces and del Pezzo surfaces. We discuss some …

Complete Calabi–Yau metrics in the complement of two divisors

TC Collins, Y Li - Duke Mathematical Journal, 2024 - projecteuclid.org
We construct new complete Calabi–Yau metrics on the complement of an anticanonical
divisor D in a Fano manifold of dimension at least three, when D consists of two transversely …

Family Floer mirror space for local SYZ singularities

H Yuan - Forum of Mathematics, Sigma, 2024 - cambridge.org
We give a mathematically precise statement of the SYZ conjecture between mirror space
pairs and prove it for any toric Calabi-Yau manifold with the Gross Lagrangian fibration. To …

The SYZ mirror symmetry conjecture for del Pezzo surfaces and rational elliptic surfaces

TC Collins, A Jacob, YS Lin - arXiv preprint arXiv:2012.05416, 2020 - arxiv.org
We prove the Strominger-Yau-Zaslow mirror symmetry conjecture for non-compact Calabi-
Yau surfaces arising from, on the one hand, pairs $(\check {Y},\check {D}) $ of a del Pezzo …