A review on generative adversarial networks: Algorithms, theory, and applications

J Gui, Z Sun, Y Wen, D Tao, J Ye - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Generative adversarial networks (GANs) have recently become a hot research topic;
however, they have been studied since 2014, and a large number of algorithms have been …

A review on medical imaging synthesis using deep learning and its clinical applications

T Wang, Y Lei, Y Fu, JF Wynne… - Journal of applied …, 2021 - Wiley Online Library
This paper reviewed the deep learning‐based studies for medical imaging synthesis and its
clinical application. Specifically, we summarized the recent developments of deep learning …

Robust compressed sensing mri with deep generative priors

A Jalal, M Arvinte, G Daras, E Price… - Advances in …, 2021 - proceedings.neurips.cc
Abstract The CSGM framework (Bora-Jalal-Price-Dimakis' 17) has shown that
deepgenerative priors can be powerful tools for solving inverse problems. However, to date …

Adaptive diffusion priors for accelerated MRI reconstruction

A Güngör, SUH Dar, Ş Öztürk, Y Korkmaz… - Medical image …, 2023 - Elsevier
Deep MRI reconstruction is commonly performed with conditional models that de-alias
undersampled acquisitions to recover images consistent with fully-sampled data. Since …

Deep learning for multigrade brain tumor classification in smart healthcare systems: A prospective survey

K Muhammad, S Khan, J Del Ser… - … on Neural Networks …, 2020 - ieeexplore.ieee.org
Brain tumor is one of the most dangerous cancers in people of all ages, and its grade
recognition is a challenging problem for radiologists in health monitoring and automated …

[HTML][HTML] An overview of deep learning in medical imaging focusing on MRI

AS Lundervold, A Lundervold - Zeitschrift für Medizinische Physik, 2019 - Elsevier
What has happened in machine learning lately, and what does it mean for the future of
medical image analysis? Machine learning has witnessed a tremendous amount of attention …

Unsupervised MRI reconstruction via zero-shot learned adversarial transformers

Y Korkmaz, SUH Dar, M Yurt, M Özbey… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Supervised reconstruction models are characteristically trained on matched pairs of
undersampled and fully-sampled data to capture an MRI prior, along with supervision …

ADMM-CSNet: A deep learning approach for image compressive sensing

Y Yang, J Sun, H Li, Z Xu - IEEE transactions on pattern …, 2018 - ieeexplore.ieee.org
Compressive sensing (CS) is an effective technique for reconstructing image from a small
amount of sampled data. It has been widely applied in medical imaging, remote sensing …

fastMRI: A publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning

F Knoll, J Zbontar, A Sriram, MJ Muckley… - Radiology: Artificial …, 2020 - pubs.rsna.org
fastMRI: A Publicly Available Raw k-Space and DICOM Dataset of Knee Images for
Accelerated MR Image Reconstruction Using Machine Learning | Radiology: Artificial …

Fastsurfer-a fast and accurate deep learning based neuroimaging pipeline

L Henschel, S Conjeti, S Estrada, K Diers, B Fischl… - NeuroImage, 2020 - Elsevier
Traditional neuroimage analysis pipelines involve computationally intensive, time-
consuming optimization steps, and thus, do not scale well to large cohort studies with …