Everything is connected: Graph neural networks

P Veličković - Current Opinion in Structural Biology, 2023 - Elsevier
In many ways, graphs are the main modality of data we receive from nature. This is due to
the fact that most of the patterns we see, both in natural and artificial systems, are elegantly …

Structure-based drug design with geometric deep learning

C Isert, K Atz, G Schneider - Current Opinion in Structural Biology, 2023 - Elsevier
Abstract Structure-based drug design uses three-dimensional geometric information of
macromolecules, such as proteins or nucleic acids, to identify suitable ligands. Geometric …

Equibind: Geometric deep learning for drug binding structure prediction

H Stärk, O Ganea, L Pattanaik… - International …, 2022 - proceedings.mlr.press
Predicting how a drug-like molecule binds to a specific protein target is a core problem in
drug discovery. An extremely fast computational binding method would enable key …

Tankbind: Trigonometry-aware neural networks for drug-protein binding structure prediction

W Lu, Q Wu, J Zhang, J Rao, C Li… - Advances in neural …, 2022 - proceedings.neurips.cc
Illuminating interactions between proteins and small drug molecules is a long-standing
challenge in the field of drug discovery. Despite the importance of understanding these …

Machine-learning methods for ligand–protein molecular docking

K Crampon, A Giorkallos, M Deldossi, S Baud… - Drug discovery today, 2022 - Elsevier
Artificial intelligence (AI) is often presented as a new Industrial Revolution. Many domains
use AI, including molecular simulation for drug discovery. In this review, we provide an …

Learning substructure invariance for out-of-distribution molecular representations

N Yang, K Zeng, Q Wu, X Jia… - Advances in Neural …, 2022 - proceedings.neurips.cc
Molecule representation learning (MRL) has been extensively studied and current methods
have shown promising power for various tasks, eg, molecular property prediction and target …

On the frustration to predict binding affinities from protein–ligand structures with deep neural networks

M Volkov, JA Turk, N Drizard, N Martin… - Journal of medicinal …, 2022 - ACS Publications
Accurate prediction of binding affinities from protein–ligand atomic coordinates remains a
major challenge in early stages of drug discovery. Using modular message passing graph …

Interactiongraphnet: A novel and efficient deep graph representation learning framework for accurate protein–ligand interaction predictions

D Jiang, CY Hsieh, Z Wu, Y Kang, J Wang… - Journal of medicinal …, 2021 - ACS Publications
Accurate quantification of protein–ligand interactions remains a key challenge to structure-
based drug design. However, traditional machine learning (ML)-based methods based on …

Deep learning for drug repurposing: Methods, databases, and applications

X Pan, X Lin, D Cao, X Zeng, PS Yu… - Wiley …, 2022 - Wiley Online Library
Drug development is time‐consuming and expensive. Repurposing existing drugs for new
therapies is an attractive solution that accelerates drug development at reduced …

AlphaFold, artificial intelligence (AI), and allostery

R Nussinov, M Zhang, Y Liu, H Jang - The Journal of Physical …, 2022 - ACS Publications
AlphaFold has burst into our lives. A powerful algorithm that underscores the strength of
biological sequence data and artificial intelligence (AI). AlphaFold has appended projects …