Error analysis of tensor-train cross approximation

Z Qin, A Lidiak, Z Gong, G Tang… - Advances in Neural …, 2022 - proceedings.neurips.cc
Tensor train decomposition is widely used in machine learning and quantum physics due to
its concise representation of high-dimensional tensors, overcoming the curse of …

Black box approximation in the tensor train format initialized by ANOVA decomposition

A Chertkov, G Ryzhakov, I Oseledets - SIAM Journal on Scientific Computing, 2023 - SIAM
Surrogate models can reduce computational costs for multivariable functions with an
unknown internal structure (black boxes). In a discrete formulation, surrogate modeling is …

Proximal gradient algorithm for nonconvex low tubal rank tensor recovery

Y Liu, X Zeng, W Wang - BIT Numerical Mathematics, 2023 - Springer
In this paper, we consider the three-order tensor recovery problem within the tensor tubal
rank framework. Most of the recent studies under this framework can not handle the tubal …

Asymptotic log-det sum-of-ranks minimization via tensor (alternating) iteratively reweighted least squares

S Krämer - arXiv preprint arXiv:2106.15201, 2021 - arxiv.org
Affine sum-of-ranks minimization (ASRM) generalizes the affine rank minimization (ARM)
problem from matrices to tensors. Here, the interest lies in the ranks of a family $\mathcal {K} …

Мультиспектральный интеллектуальный мониторинг природной и техногенной среды

СА Барталев, ЕВ Бурнаев, ВС Верба, НА Ивлиев… - 2023 - elibrary.ru
Оперативный мониторинг природной и техногенной среды на множестве длин волн
электромагнитного излучения обеспечивает получение уникальных данных …

[PDF][PDF] Tensor Train Approximations: Riemannian Methods, Randomized Linear Algebra and Applications to Machine Learning

WH VOORHAAR - archive-ouverte.unige.ch
This thesis concerns the optimization and application of low-rank methods, with a special
focus on tensor trains (TTs). In particular, we develop methods for computing TT …