Multiple instance learning with bag dissimilarities

V Cheplygina, DMJ Tax, M Loog - Pattern recognition, 2015 - Elsevier
Multiple instance learning (MIL) is concerned with learning from sets (bags) of objects
(instances), where the individual instance labels are ambiguous. In this setting, supervised …

Good recognition is non-metric

WJ Scheirer, MJ Wilber, M Eckmann, TE Boult - Pattern Recognition, 2014 - Elsevier
Recognition is the fundamental task of visual cognition, yet how to formalize the general
recognition problem for computer vision remains an open issue. The problem is sometimes …

On the informativeness of asymmetric dissimilarities

Y Plasencia-Calaña, V Cheplygina, RPW Duin… - … 2013, York, UK, July 3-5 …, 2013 - Springer
A widely used approach to cope with asymmetry in dissimilarities is by symmetrizing them.
Usually, asymmetry is corrected by applying combiners such as average, minimum or …

[PDF][PDF] Dissimilarity-Based Multiple Instance Learning.

V Cheplygina - 2015 - Citeseer
Both humans and machines are able to learn from examples. In humans this happens
naturally: repeated experiences lead to associations of input from the senses, to certain …

Nuevos mé todos de selección de prototipos para la clasificación en espacios de disimilitud está ndares y generalizados

YP Calaña - Anales de la Academia de Ciencias de Cuba, 2017 - revistaccuba.sld.cu
Este trabajo aborda el problema del reconocimiento automá tico de objetos a partir de una
representación computacional de los mismos, el cual se enmarca en el campo de …