Efficient 3D semantic segmentation with superpoint transformer

D Robert, H Raguet, L Landrieu - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
We introduce a novel superpoint-based transformer architecture for efficient semantic
segmentation of large-scale 3D scenes. Our method incorporates a fast algorithm to partition …

Model compression in practice: Lessons learned from practitioners creating on-device machine learning experiences

F Hohman, MB Kery, D Ren, D Moritz - … of the CHI Conference on Human …, 2024 - dl.acm.org
On-device machine learning (ML) promises to improve the privacy, responsiveness, and
proliferation of new, intelligent user experiences by moving ML computation onto everyday …

Talaria: Interactively optimizing machine learning models for efficient inference

F Hohman, C Wang, J Lee, J Görtler, D Moritz… - Proceedings of the CHI …, 2024 - dl.acm.org
On-device machine learning (ML) moves computation from the cloud to personal devices,
protecting user privacy and enabling intelligent user experiences. However, fitting models …

Compress and Compare: Interactively Evaluating Efficiency and Behavior Across ML Model Compression Experiments

A Boggust, V Sivaraman, Y Assogba… - … on Visualization and …, 2024 - ieeexplore.ieee.org
To deploy machine learning models on-device, practitioners use compression algorithms to
shrink and speed up models while maintaining their high-quality output. A critical aspect of …

Energy-efficiency Limits on Training AI Systems using Learning-in-Memory

Z Chen, J Leugering, G Cauwenberghs… - arXiv preprint arXiv …, 2024 - arxiv.org
Learning-in-memory (LIM) is a recently proposed paradigm to overcome fundamental
memory bottlenecks in training machine learning systems. While compute-in-memory (CIM) …

Bakalárska práca

P Filipiak - davinci.fmph.uniba.sk
Anotácia: Hlboké architektúry neurónových sietí preukázali schopnosť napodobňovať ľudí
pri rôznych úlohách (rozpoznávanie obrazu, opis scény, alebo hranie hier). Veľký nárast …