On-device machine learning (ML) promises to improve the privacy, responsiveness, and proliferation of new, intelligent user experiences by moving ML computation onto everyday …
On-device machine learning (ML) moves computation from the cloud to personal devices, protecting user privacy and enabling intelligent user experiences. However, fitting models …
To deploy machine learning models on-device, practitioners use compression algorithms to shrink and speed up models while maintaining their high-quality output. A critical aspect of …
Learning-in-memory (LIM) is a recently proposed paradigm to overcome fundamental memory bottlenecks in training machine learning systems. While compute-in-memory (CIM) …
Anotácia: Hlboké architektúry neurónových sietí preukázali schopnosť napodobňovať ľudí pri rôznych úlohách (rozpoznávanie obrazu, opis scény, alebo hranie hier). Veľký nárast …