Non-density of stability for holomorphic mappings on 

R Dujardin - Journal de l'École polytechnique-Mathématiques, 2017 - numdam.org
A well-known theorem due to Mañé-Sad-Sullivan and Lyubich asserts that J-stable maps
are dense in any holomorphic family of rational maps in dimension 1. In this paper we show …

Iterated functions systems, blenders, and parablenders

P Berger, S Crovisier, E Pujals - … on Fractals and Related Fields III, île de …, 2017 - Springer
Iterated Functions Systems, Blenders, and Parablenders | SpringerLink Skip to main content
Advertisement SpringerLink Account Menu Find a journal Publish with us Track your research …

Typical self-affine sets with non-empty interior

DJ Feng, Z Feng - arXiv preprint arXiv:2209.09126, 2022 - arxiv.org
Let $ T_1,\ldots, T_m $ be a family of $ d\times d $ invertible real matrices with $\| T_i\|< 1/2$
for $1\leq i\leq m $. We provide some sufficient conditions on these matrices such that the …

Absolute continuity of complex Bernoulli convolutions

P Shmerkin, B Solomyak - Mathematical Proceedings of the …, 2016 - cambridge.org
We prove that complex Bernoulli convolutions are absolutely continuous in the supercritical
parameter region, outside of an exceptional set of parameters of zero Hausdorff dimension …

Thresholds for one-parameter families of affine iterated function systems

A Vince - Nonlinearity, 2020 - iopscience.iop.org
This paper examines thresholds for certain properties of the attractor of a general one-
parameter affine family of iterated functions systems. As the parameter increases, the …

Interiors of continuous images of the middle-third Cantor set

K Jiang, L Xi - arXiv preprint arXiv:1809.01880, 2018 - arxiv.org
Let $ C $ be the middle-third Cantor set, and $ f $ a continuous function defined on an open
set $ U\subset\mathbb {R}^{2} $. Denote the image\begin {equation*} f_ {U}(C, C)=\{f (x, y):(x …

Multiple representations of real numbers on self-similar sets with overlaps

K Jiang, X Ren, J Zhu, L Tian - Fractals, 2019 - World Scientific
Let K be the attractor of the following iterated function system (IFS){f 1 (x)= λ x, f 2 (x)= λ x+ c−
λ, f 3 (x)= λ x+ 1− λ}, where f 1 (I)∩ f 2 (I)≠∅,(f 1 (I)∪ f 2 (I))∩ f 3 (I)=∅, and I=[0, 1] is the …

Attractor sets and Julia sets in low dimensions

A Fletcher - Conformal Geometry and Dynamics of the American …, 2019 - ams.org
If $ X $ is the attractor set of a conformal IFS (iterated function system) in dimension two or
three, we prove that there exists a quasiregular semigroup $ G $ with a Julia set equal to $ X …

Multidimensional self-affine sets: non-empty interior and the set of uniqueness

KG Hare, N Sidorov - arXiv preprint arXiv:1506.08714, 2015 - arxiv.org
Let $ M $ be a $ d\times d $ contracting matrix. In this paper we consider the self-affine
iterated function system $\{Mv-u, Mv+ u\} $, where $ u $ is a cyclic vector. Our main result is …

On a family of Self-Affine IFS whose attractors have a non-fractal top

KG Hare, N Sidorov - Fractals, 2021 - World Scientific
Let 0< λ< μ< 1 and λ+ μ> 1. In this paper, we prove that for the vast majority of such
parameters the top of the planar attractor A λ, μ of the IFS {(λ x, μ y),(μ x+ 1− μ, λ y+ 1− λ)} is …