Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks

L Wang, KJ Yoon - IEEE transactions on pattern analysis and …, 2021 - ieeexplore.ieee.org
Deep neural models, in recent years, have been successful in almost every field, even
solving the most complex problem statements. However, these models are huge in size with …

Monocular depth estimation based on deep learning: An overview

C Zhao, Q Sun, C Zhang, Y Tang, F Qian - Science China Technological …, 2020 - Springer
Depth information is important for autonomous systems to perceive environments and
estimate their own state. Traditional depth estimation methods, like structure from motion …

Monovit: Self-supervised monocular depth estimation with a vision transformer

C Zhao, Y Zhang, M Poggi, F Tosi… - … conference on 3D …, 2022 - ieeexplore.ieee.org
Self-supervised monocular depth estimation is an attractive solution that does not require
hard-to-source depth la-bels for training. Convolutional neural networks (CNNs) have …

Self-supervised monocular depth estimation: Solving the dynamic object problem by semantic guidance

M Klingner, JA Termöhlen, J Mikolajczyk… - Computer Vision–ECCV …, 2020 - Springer
Self-supervised monocular depth estimation presents a powerful method to obtain 3D scene
information from single camera images, which is trainable on arbitrary image sequences …

Robodepth: Robust out-of-distribution depth estimation under corruptions

L Kong, S Xie, H Hu, LX Ng… - Advances in Neural …, 2024 - proceedings.neurips.cc
Depth estimation from monocular images is pivotal for real-world visual perception systems.
While current learning-based depth estimation models train and test on meticulously curated …

Feature-metric loss for self-supervised learning of depth and egomotion

C Shu, K Yu, Z Duan, K Yang - European Conference on Computer Vision, 2020 - Springer
Photometric loss is widely used for self-supervised depth and egomotion estimation.
However, the loss landscapes induced by photometric differences are often problematic for …

Artificial intelligence (AI) in augmented reality (AR)-assisted manufacturing applications: a review

CK Sahu, C Young, R Rai - International Journal of Production …, 2021 - Taylor & Francis
Augmented reality (AR) has proven to be an invaluable interactive medium to reduce
cognitive load by bridging the gap between the task-at-hand and relevant information by …

Robust monocular depth estimation under challenging conditions

S Gasperini, N Morbitzer, HJ Jung… - Proceedings of the …, 2023 - openaccess.thecvf.com
While state-of-the-art monocular depth estimation approaches achieve impressive results in
ideal settings, they are highly unreliable under challenging illumination and weather …

Monocular depth estimation using deep learning: A review

A Masoumian, HA Rashwan, J Cristiano, MS Asif… - Sensors, 2022 - mdpi.com
In current decades, significant advancements in robotics engineering and autonomous
vehicles have improved the requirement for precise depth measurements. Depth estimation …

On the uncertainty of self-supervised monocular depth estimation

M Poggi, F Aleotti, F Tosi… - Proceedings of the IEEE …, 2020 - openaccess.thecvf.com
Self-supervised paradigms for monocular depth estimation are very appealing since they do
not require ground truth annotations at all. Despite the astonishing results yielded by such …