A comprehensive survey on pretrained foundation models: A history from bert to chatgpt

C Zhou, Q Li, C Li, J Yu, Y Liu, G Wang… - arXiv preprint arXiv …, 2023 - arxiv.org
Pretrained Foundation Models (PFMs) are regarded as the foundation for various
downstream tasks with different data modalities. A PFM (eg, BERT, ChatGPT, and GPT-4) is …

Self-supervised learning for recommender systems: A survey

J Yu, H Yin, X Xia, T Chen, J Li… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
In recent years, neural architecture-based recommender systems have achieved
tremendous success, but they still fall short of expectation when dealing with highly sparse …

Rethinking semantic segmentation: A prototype view

T Zhou, W Wang, E Konukoglu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Prevalent semantic segmentation solutions, despite their different network designs (FCN
based or attention based) and mask decoding strategies (parametric softmax based or pixel …

Context autoencoder for self-supervised representation learning

X Chen, M Ding, X Wang, Y Xin, S Mo, Y Wang… - International Journal of …, 2024 - Springer
We present a novel masked image modeling (MIM) approach, context autoencoder (CAE),
for self-supervised representation pretraining. We pretrain an encoder by making predictions …

Improving graph collaborative filtering with neighborhood-enriched contrastive learning

Z Lin, C Tian, Y Hou, WX Zhao - … of the ACM web conference 2022, 2022 - dl.acm.org
Recently, graph collaborative filtering methods have been proposed as an effective
recommendation approach, which can capture users' preference over items by modeling the …

Balanced contrastive learning for long-tailed visual recognition

J Zhu, Z Wang, J Chen, YPP Chen… - Proceedings of the …, 2022 - openaccess.thecvf.com
Real-world data typically follow a long-tailed distribution, where a few majority categories
occupy most of the data while most minority categories contain a limited number of samples …

Beit: Bert pre-training of image transformers

H Bao, L Dong, S Piao, F Wei - arXiv preprint arXiv:2106.08254, 2021 - arxiv.org
We introduce a self-supervised vision representation model BEiT, which stands for
Bidirectional Encoder representation from Image Transformers. Following BERT developed …

Simmatch: Semi-supervised learning with similarity matching

M Zheng, S You, L Huang, F Wang… - Proceedings of the …, 2022 - openaccess.thecvf.com
Learning with few labeled data has been a longstanding problem in the computer vision and
machine learning research community. In this paper, we introduced a new semi-supervised …

Emerging properties in self-supervised vision transformers

M Caron, H Touvron, I Misra, H Jégou… - Proceedings of the …, 2021 - openaccess.thecvf.com
In this paper, we question if self-supervised learning provides new properties to Vision
Transformer (ViT) that stand out compared to convolutional networks (convnets). Beyond the …

Scaling up visual and vision-language representation learning with noisy text supervision

C Jia, Y Yang, Y Xia, YT Chen… - International …, 2021 - proceedings.mlr.press
Pre-trained representations are becoming crucial for many NLP and perception tasks. While
representation learning in NLP has transitioned to training on raw text without human …