A review of android malware detection approaches based on machine learning

K Liu, S Xu, G Xu, M Zhang, D Sun, H Liu - IEEE access, 2020 - ieeexplore.ieee.org
Android applications are developing rapidly across the mobile ecosystem, but Android
malware is also emerging in an endless stream. Many researchers have studied the …

Deep learning for android malware defenses: a systematic literature review

Y Liu, C Tantithamthavorn, L Li, Y Liu - ACM Computing Surveys, 2022 - dl.acm.org
Malicious applications (particularly those targeting the Android platform) pose a serious
threat to developers and end-users. Numerous research efforts have been devoted to …

Dos and don'ts of machine learning in computer security

D Arp, E Quiring, F Pendlebury, A Warnecke… - 31st USENIX Security …, 2022 - usenix.org
With the growing processing power of computing systems and the increasing availability of
massive datasets, machine learning algorithms have led to major breakthroughs in many …

Enhancing state-of-the-art classifiers with api semantics to detect evolved android malware

X Zhang, Y Zhang, M Zhong, D Ding, Y Cao… - Proceedings of the …, 2020 - dl.acm.org
Machine learning (ML) classifiers have been widely deployed to detect Android malware,
but at the same time the application of ML classifiers also faces an emerging problem. The …

[HTML][HTML] MalDozer: Automatic framework for android malware detection using deep learning

EMB Karbab, M Debbabi, A Derhab, D Mouheb - Digital investigation, 2018 - Elsevier
Android OS experiences a blazing popularity since the last few years. This predominant
platform has established itself not only in the mobile world but also in the Internet of Things …

Droidcat: Effective android malware detection and categorization via app-level profiling

H Cai, N Meng, B Ryder, D Yao - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
Most existing Android malware detection and categorization techniques are static
approaches, which suffer from evasion attacks, such as obfuscation. By analyzing program …

Android HIV: A study of repackaging malware for evading machine-learning detection

X Chen, C Li, D Wang, S Wen, J Zhang… - IEEE Transactions …, 2019 - ieeexplore.ieee.org
Machine learning-based solutions have been successfully employed for the automatic
detection of malware on Android. However, machine learning models lack robustness to …

Mamadroid: Detecting android malware by building markov chains of behavioral models (extended version)

L Onwuzurike, E Mariconti, P Andriotis… - ACM Transactions on …, 2019 - dl.acm.org
As Android has become increasingly popular, so has malware targeting it, thus motivating
the research community to propose different detection techniques. However, the constant …

Transcend: Detecting concept drift in malware classification models

R Jordaney, K Sharad, SK Dash, Z Wang… - 26th USENIX security …, 2017 - usenix.org
Building machine learning models of malware behavior is widely accepted as a panacea
towards effective malware classification. A crucial requirement for building sustainable …

{Explanation-Guided} backdoor poisoning attacks against malware classifiers

G Severi, J Meyer, S Coull, A Oprea - 30th USENIX security symposium …, 2021 - usenix.org
Training pipelines for machine learning (ML) based malware classification often rely on
crowdsourced threat feeds, exposing a natural attack injection point. In this paper, we study …