On the tangent space to the Hilbert scheme of points in 𝐏³

R Ramkumar, A Sammartano - Transactions of the American Mathematical …, 2022 - ams.org
In this paper we study the tangent space to the Hilbert scheme $\mathrm {Hilb}^ d\mathbf
{P}^ 3$, motivated by Haiman's work on $\mathrm {Hilb}^ d\mathbf {P}^ 2$ and by a long …

On minimal presentations of numerical monoids

A Moscariello, A Sammartano - arXiv preprint arXiv:2405.19810, 2024 - arxiv.org
We consider the classical problem of determining the largest possible cardinality of a
minimal presentation of a numerical monoid with given embedding dimension and …

Bounds for syzygies of monomial curves

G Caviglia, A Moscariello, A Sammartano - Proceedings of the American …, 2024 - ams.org
Let $\Gamma\subseteq\mathbb {N} $ be a numerical semigroup. In this paper, we prove an
upper bound for the Betti numbers of the semigroup ring of $\Gamma $ which depends only …

[PDF][PDF] HILBERT SCHEMES OVER QUOTIENT RINGS VIA RELATIVE MARKED BASES

C BERTONE, F CIOFFI, M ORTH… - arXiv preprint arXiv …, 2022 - researchgate.net
In this paper, we introduce the notion of relative marked bases over quasi-stable ideals,
together with constructive methods and a functorial interpretation. This notion allows to …