Singular radial solutions for the Keller-Segel equation in high dimension

D Bonheure, JB Casteras, J Foldes - Journal de mathématiques pures et …, 2020 - Elsevier
We study singular radially symmetric solution of the stationary Keller-Segel equation, that is,
an elliptic equation with exponential nonlinearity, which is super-critical in dimension N≥ 3 …

A finite volume scheme for the local sensing chemotaxis model

M Herda, A Trescases, A Zurek - arXiv preprint arXiv:2412.13143, 2024 - arxiv.org
In this paper we design, analyze and simulate a finite volume scheme for a cross-diffusion
system which models chemotaxis with local sensing. This system has the same gradient flow …

Classification of radial blow-up at the first critical exponent for the Lin–Ni–Takagi problem in the ball

D Bonheure, JB Casteras, B Premoselli - Mathematische Annalen, 2024 - Springer
We investigate the behaviour of radial solutions to the Lin–Ni–Takagi problem in the ball
BR⊂ RN for N≥ 3:-▵ up+ up=| up| p-2 up in BR,∂ ν up= 0 on∂ BR, when p is close to the …

[HTML][HTML] Maximal solution of the Liouville equation in doubly connected domains

M Kowalczyk, A Pistoia, G Vaira - Journal of Functional Analysis, 2019 - Elsevier
In this paper we consider the Liouville equation Δ u+ λ 2 eu= 0 with Dirichlet boundary
conditions in a two dimensional, doubly connected domain Ω. We show that there exists a …

Keller–Segel System: A Survey on Radial Steady States

JB Casteras - Portugal-Italy Conference on Nonlinear Differential …, 2022 - Springer
Keller–Segel System: A Survey on Radial Steady States | SpringerLink Skip to main content
Advertisement SpringerLink Account Menu Find a journal Publish with us Track your …

Boundary concentration phenomena for an anisotropic Neumann problem in

Y Zhang - arXiv preprint arXiv:2110.13378, 2021 - arxiv.org
Given a smooth bounded domain $\Omega $ in $\mathbb {R}^ 2$, we study the following
anisotropic Neumann problem $$\begin {cases}-\nabla (a (x)\nabla u)+ a (x) u=\lambda a (x) …

Free boundary problems arising in the theory of maximal solutions of equations with exponential nonlinearities

M Kowalczyk, A Pistoia, P Rybka… - … Laurent Schwartz—EDP et …, 2018 - numdam.org
We consider equations of the form∆ u+ λ2V (x) eu= ρ in various two dimensional settings.
We assume that V> 0 is a given function, λ> 0 is a small parameter and ρ= O (1) or ρ→+∞ as …

Analysis of singularities in elliptic equations: the Ginzburg-Landau model of superconductivity, the Lin-Ni-Takagi problem, the Keller-Segel model of chemotaxis, and …

C Román - 2017 - theses.hal.science
This thesis is devoted to the analysis of singularities in nonlinear elliptic partial differential
equations arising in mathematical physics, mathematical biology, and conformal geometry …