A review of location encoding for GeoAI: methods and applications

G Mai, K Janowicz, Y Hu, S Gao, B Yan… - International Journal …, 2022 - Taylor & Francis
ABSTRACT A common need for artificial intelligence models in the broader geoscience is to
encode various types of spatial data, such as points, polylines, polygons, graphs, or rasters …

Sequence-aware recommender systems

M Quadrana, P Cremonesi, D Jannach - ACM computing surveys (CSUR …, 2018 - dl.acm.org
Recommender systems are one of the most successful applications of data mining and
machine-learning technology in practice. Academic research in the field is historically often …

Learning from history: Modeling temporal knowledge graphs with sequential copy-generation networks

C Zhu, M Chen, C Fan, G Cheng… - Proceedings of the AAAI …, 2021 - ojs.aaai.org
Large knowledge graphs often grow to store temporal facts that model the dynamic relations
or interactions of entities along the timeline. Since such temporal knowledge graphs often …

Neural ordinary differential equations

RTQ Chen, Y Rubanova… - Advances in neural …, 2018 - proceedings.neurips.cc
We introduce a new family of deep neural network models. Instead of specifying a discrete
sequence of hidden layers, we parameterize the derivative of the hidden state using a …

Predicting dynamic embedding trajectory in temporal interaction networks

S Kumar, X Zhang, J Leskovec - Proceedings of the 25th ACM SIGKDD …, 2019 - dl.acm.org
Modeling sequential interactions between users and items/products is crucial in domains
such as e-commerce, social networking, and education. Representation learning presents …

Dyrep: Learning representations over dynamic graphs

R Trivedi, M Farajtabar, P Biswal, H Zha - International conference on …, 2019 - par.nsf.gov
Representation Learning over graph structured data has received significant attention
recently due to its ubiquitous applicability. However, most advancements have been made …

Representation learning for dynamic graphs: A survey

SM Kazemi, R Goel, K Jain, I Kobyzev, A Sethi… - Journal of Machine …, 2020 - jmlr.org
Graphs arise naturally in many real-world applications including social networks,
recommender systems, ontologies, biology, and computational finance. Traditionally …

Time2vec: Learning a vector representation of time

SM Kazemi, R Goel, S Eghbali, J Ramanan… - arXiv preprint arXiv …, 2019 - arxiv.org
Time is an important feature in many applications involving events that occur synchronously
and/or asynchronously. To effectively consume time information, recent studies have …

Deepmove: Predicting human mobility with attentional recurrent networks

J Feng, Y Li, C Zhang, F Sun, F Meng, A Guo… - Proceedings of the 2018 …, 2018 - dl.acm.org
Human mobility prediction is of great importance for a wide spectrum of location-based
applications. However, predicting mobility is not trivial because of three challenges: 1) the …

Transformer hawkes process

S Zuo, H Jiang, Z Li, T Zhao… - … conference on machine …, 2020 - proceedings.mlr.press
Modern data acquisition routinely produce massive amounts of event sequence data in
various domains, such as social media, healthcare, and financial markets. These data often …