A systematic literature review on federated machine learning: From a software engineering perspective

SK Lo, Q Lu, C Wang, HY Paik, L Zhu - ACM Computing Surveys (CSUR …, 2021 - dl.acm.org
Federated learning is an emerging machine learning paradigm where clients train models
locally and formulate a global model based on the local model updates. To identify the state …

Decentralised learning in federated deployment environments: A system-level survey

P Bellavista, L Foschini, A Mora - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
Decentralised learning is attracting more and more interest because it embodies the
principles of data minimisation and focused data collection, while favouring the transparency …

Fine-tuning global model via data-free knowledge distillation for non-iid federated learning

L Zhang, L Shen, L Ding, D Tao… - Proceedings of the …, 2022 - openaccess.thecvf.com
Federated Learning (FL) is an emerging distributed learning paradigm under privacy
constraint. Data heterogeneity is one of the main challenges in FL, which results in slow …

Data-free knowledge distillation for heterogeneous federated learning

Z Zhu, J Hong, J Zhou - International conference on machine …, 2021 - proceedings.mlr.press
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global
server iteratively averages the model parameters of local users without accessing their data …

Model-contrastive federated learning

Q Li, B He, D Song - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
Federated learning enables multiple parties to collaboratively train a machine learning
model without communicating their local data. A key challenge in federated learning is to …

Towards understanding biased client selection in federated learning

YJ Cho, J Wang, G Joshi - International Conference on …, 2022 - proceedings.mlr.press
Federated learning is a distributed optimization paradigm that enables a large number of
resource-limited client nodes to cooperatively train a model without data sharing. Previous …

Towards personalized federated learning

AZ Tan, H Yu, L Cui, Q Yang - IEEE transactions on neural …, 2022 - ieeexplore.ieee.org
In parallel with the rapid adoption of artificial intelligence (AI) empowered by advances in AI
research, there has been growing awareness and concerns of data privacy. Recent …

Federated learning on non-iid data silos: An experimental study

Q Li, Y Diao, Q Chen, B He - 2022 IEEE 38th international …, 2022 - ieeexplore.ieee.org
Due to the increasing privacy concerns and data regulations, training data have been
increasingly fragmented, forming distributed databases of multiple “data silos”(eg, within …

Fedbn: Federated learning on non-iid features via local batch normalization

X Li, M Jiang, X Zhang, M Kamp, Q Dou - arXiv preprint arXiv:2102.07623, 2021 - arxiv.org
The emerging paradigm of federated learning (FL) strives to enable collaborative training of
deep models on the network edge without centrally aggregating raw data and hence …

Federated learning based on dynamic regularization

DAE Acar, Y Zhao, RM Navarro, M Mattina… - arXiv preprint arXiv …, 2021 - arxiv.org
We propose a novel federated learning method for distributively training neural network
models, where the server orchestrates cooperation between a subset of randomly chosen …